
Programmers Guide For
MapuSoft Standalone Products

Copyright (c) 2009
MapuSoft Technologies
1301 Azalea Road
Mobile, AL 36693

Programmers Guide For MapuSoft Standalone Products

2

Copyright

The information contained herein is subject to change without notice. The materials located
on the Mapusoft. (”MapuSoft”) web site are protected by copyright, trademark and other forms
of proprietary rights and are owned or controlled by MapuSoft or the party credited as the
provider of the information.

MapuSoft retains all copyrights and other property rights in all text, graphic images, and
software owned by MapuSoft and hereby authorizes you to electronically copy documents
published herein solely for the purpose of reviewing the information.

You may not alter any files in this document for advertisement, or print the information
contained herein, without prior written permission from MapuSoft.

MapuSoft assumes no responsibility for errors or omissions in this publication or other
documents which are referenced by or linked to this publication. This publication could
include technical or other inaccuracies, and not all products or services referenced herein are
available in all areas. MapuSoft assumes no responsibility to you or any third party for the
consequences of an error or omissions. The information on this web site is periodically
updated and may change without notice.

This product includes the software with the following trademarks:
MS-DOS is a trademark of Microsoft Corporation.
UNIX is a trademark of X/Open.
IBM PC is a trademark of International Business Machines, Inc.
Nucleus PLUS and Nucleus NET are registered trademarks of Mentor Graphics Corporation.
Linux is a registered trademark of Linus Torvald.
VxWorks and pSOS are registered trademarks of Wind River Systems.

For additional assistance, please contact us at:
MapuSoft Technologies
1301 Azalea Road
Mobile, Alabama 36693
251.665.0280
251.660.0288 FAX
support@mapusoft.com
info@mapusoft.com
http://www.mapusoft.com
Last Revised: 14/05/2009

Copyright (©) 2009, All Rights Reserved

Programmers Guide For MapuSoft Standalone Products

3

Table of Contents
Chapter 1.About this Guide ...6

Objectives.. 7
Document Conventions.. 7
MapuSoft Technologies and Related Documentation 8
Requesting Support ... 9

Registering a New Account .. 9
Submitting a Ticket .. 9
Live Support Offline .. 9

Chapter 2.Introduction to OS Abstractor.........................10
OS Abstractor Frame Work .. 11

Introduction to OS Abstractor Products... 11
Installing OS Abstractor Products ... 11
How to Use OS Abstractor... 11
Building BASE OS Abstractor Library.. 12
Building BASE OS Abstractor Demo Application................................ 12
Building POSIX OS Abstractor .. 12
Building POSIX OS Abstractor Library... 12
Building POSIX OS Abstractor Demo Application............................... 12
Building micro-ITRON OS Abstractor .. 13
Building micro-ITRON OS Abstractor Library..................................... 13
Building micro-ITRON OS Abstractor Demo Application..................... 13
Building VxWorks OS Changer.. 13
Building VxWorks OS Changer Library.. 13
Building VxWorks OS Changer Demo Application.............................. 13
Building pSOS OS Changer... 14
Building pSOS OS Changer Library... 14
Building pSOS OS Changer Demo Application 14
Building Nucleus OS Changer ... 14
Building Nuceus OS Changer Library .. 14
Building Nucleus OS Changer Demo Application 14

Chapter 3.OS Changer Framework...................................15
Introduction to OS Changer ... 16

About OS Changer.. 16
How to Use OS Changer.. 17
Conditional Compilations.. 17
Porting Applications from Legacy Code to Target OS 18
OS Changer Defines.. 18
API Variations... 19
Error Handling ... 19

Chapter 4.Using OS Abstractor with Native Tools20
OS Abstractor Tool Sets ... 21
Using OS Abstractor under GNU Makefile Environment 22

Building with Eclipse IDE ... 23
Building with Windriver Workbench .. 24
Building with QNX Momentics .. 24
Building with Visual Studio 6.0... 25

Chapter 5.System Configuration26
System Configuration... 27

Programmers Guide For MapuSoft Standalone Products

4

Target OS Selection .. 27
OS HOST Selection ... 28
Target 64 bit CPU Selection... 28
User Configuration File Location ... 29
OS Changer Components Selection ... 30
POSIX OS Abstractor Selection.. 31
OS Abstractor Process Feature Selection ... 31
OS Abstractor Task-Pooling Feature Selection 32
OS Abstractor Profiler Feature Selection.. 34
OS Abstractor Output Device Selection ... 35
OS Abstractor Debug and Error Checking ... 35
OS Abstractor ANSI API Mapping .. 36
OS Abstractor External Memory Allocation .. 37
OS Abstractor Resource Configuration .. 37
OS Abstractor Minimum Memory Pool Block Configuration................ 39
OS Abstractor Application Shared Memory Configuration 40
OS Abstractor Clock Tick Configuration .. 41
OS Abstractor Device I/O Configuration .. 42
OS Abstractor Target OS Specific Notes ... 43
Nucleus PLUS Target .. 43
Precise/MQX Target.. 43
Linux Target ... 44
Single-process Application Exit ... 46
Multi-process Application Exit .. 46
Manual Clean-up.. 46
Multi-process Zombie Cleanup.. 46
Task’s Stack Size .. 46
SMP Flags .. 47
Windows Target .. 47
QNX Target... 47
VxWorks Target .. 49

Application Initialization .. 50
Example: BASE OS Abstractor for Windows Initialization................... 50
Example: POSIX OS Abstractor for Windows Target Initialization 52
‘Runtime Memory Allocations.. 53
Runtime Memory Allocations... 54
OS Abstractor ... 54
POSIX OS Abstractor .. 54
micro-ITRON OS Abstractor .. 55
OS Changer VxWorks ... 56
OS Changer pSOS .. 56
OS Changer Nucleus... 56

OS Abstractor Process Feature ... 57
Simple (single-process) Versus Complex (multiple-process) Applications58
Memory Usage .. 59
Memory Usage under Virtual memory model based OS 60
Multi-process Application ... 60
Single-process Application .. 60
Memory Usage under Single memory model based OS 61
Multi-process Application ... 61
Single-process Application .. 63

POSIX OS Abstractor Configuration.. 64
Porting POSIX Legacy Code with OS Abstractor 64
POSIX OS Abstractor – API Deviations... 65

Programmers Guide For MapuSoft Standalone Products

5

Chapter 6.OS Changer Porting Examples66
Sample Porting of pSOS Application to Linux with OS Changer............. 67

OS Changer Overview ... 70
About pSOS OS Changer .. 71
OS Changer and Linux OS Integration .. 71
How to Use pSOS OS Changer .. 71
OS Changer Library Initialization .. 73
Device Drivers Initialization .. 74
Linux Time and Clock Initialization ... 75
Memory Usage .. 75
Priority Mapping from pSOS to Linux .. 75
Conditional Compilations.. 76

Sample Porting of VxWorks Application with OS Changer using OSPAL. 78
Create a New Project ... 78
Link-in MapuSoft Technologies Products with the Application............ 79
Build the Application to Include MT’s Products.................................. 79
Run the Application on the Host in OS PAL 80
Generate Code on the New Target OS .. 81
Run the Application on the Target OS ... 82

Revision History... 83

Programmers Guide For MapuSoft Standalone Products

6

Chapter 1.About this Guide
This chapter contains the following topics:

 Objectives

 Document Conventions

 MapuSoft Technologies and Related Documentation

 Requesting Support

Programmers Guide For MapuSoft Standalone Products

7

Objectives

This manual contains instructions on how to get started with the Mapusoft products. The
intention of the document is to guide the user to install, configure, build and execute the
applications using Mapusoft products.

Document Conventions

Table 1 defines the notice icons used in this manual.

Table 1: Notice Icons

Icon Meaning Description

 Informational note Indicates important
features or icons.

Caution Indicates a situation that
might result in loss of
data or software damage.

Table 2 defines the text and syntax conventions used in this manual.

Table 2: Text and Syntax Conventions

Convention Description

Courier New Identifies Program listings
and Program examples.

Italic text like this Introduces important new
terms.
 Identifies book names
 Identifies Internet draft

titles.
COURIER NEW, ALL CAPS Identifies File names.
Courier New, Bold Identifies Interactive

Command lines

Programmers Guide For MapuSoft Standalone Products

8

MapuSoft Technologies and Related Documentation

Document Description
Programmers Guide to Mapusoft
Products

Provides detailed description of how to
get started with MapuSoft Abstraction
frame work and porting applications.
 Explains how to generate

standalone OS Abstractor/OS
Changer packages

OS Abstractor Reference Manual Provides detailed description of how to
do abstraction solution. This guide:
 Explains how to develop code

independent of the underlying OS
 Explains how to make your software

easily support multiple OS
platforms

OS Changer Reference
Manual

Provides detailed description of how to
get started with OS Changer. This
guide:
 Explains how to port applications to

target platforms
OS PAL User Guide Provides detailed description of how to

use OS PAL. This guide:
 Explains how to port applications
 Explains how to import legacy

applications
 Explains how to do code

optimization
Release Notes Provides the updated release

information about MapuSoft
Technologies new products and
features for the latest release.
This document:
 Gives detailed information of the

new products
 Gives detailed information of the

new features added into this release
and their limitations, if required

All the documents are available at http://mapusoft.com/products/techdata/.

Programmers Guide For MapuSoft Standalone Products

9

Requesting Support

Technical support is available through the MapuSoft Technologies Support Center. If you
are a customer with an active MapuSoft support contract, or covered under warranty, and
need post sales technical support, you can access our tools and resources online or open
a ticket at http://mapusoft.com/support/.

To submit a ticket, you need to register for a new account.

Registering a New Account

To register:

1. From OS PAL main page, select Support.
2. Select Register and enter the required details.
3. After furnishing all your details, click Submit.

Submitting a Ticket

To submit a ticket:

1. From OS PAL main page, select Support > Submit a Ticket.
2. Select a department according to your problem, and click Next.
3. Fill in your details and provide detailed information of your problem.
4. Click Submit.

MapuSoft Support personnel will get back to you within 48 hours with a valid response.

Live Support Offline

MapuSoft Technologies also provides technical support through Live Support offline.

To contact live support offline:

1. From OS PAL main page, select Support > Live Support Offline.
2. Enter your personal details in the required fields. Enter a message about your

technical query. One of our support personnel will get back to you as soon as
possible.

3. Click Send.

You can reach us at our toll free number: 1-877-627-8763 for any urgent assistance.

Programmers Guide For MapuSoft Standalone Products

10

Chapter 2.Introduction to OS
Abstractor

This chapter contains the OS Abstractor framework with the following topics:

 Introduction to OS Abstractor
 Installing OS Abstractor Products
 Installing OS Abstractor
 How to Use OS Abstractor
 Building BASE OS Abstractor Library
 Building BASE OS Abstractor Demo Application
 Building POSIX OS Abstractor
 Building POSIX OS Abstractor Library
 Building POSIX OS Abstractor Demo Application

 Using OS Abstractor under GNU Makefile
 Building micro-ITRON OS Abstractor

Programmers Guide For MapuSoft Standalone Products

11

OS Abstractor Frame Work

Introduction to OS Abstractor Products

The following are the OS Abstractor products:

 BASE OS Abstractor
 POSIX
 micro-ITRON
 VxWorks
 pSOS
 Nucleus

OS Abstractor is designed for use as a C library. Services used inside your application
software are extracted from the OS Abstractor libraries and are then combined with the
other application objects to produce the complete image. This image may be downloaded
to the target system or placed in ROM on the target system. OS Abstractor will also
function under various host environments.

Application developers need to specify the target operating system that the application and
the libraries are to be built for inside the project build scripts. Application developers can
also customize OS Abstractor to include only the components that are needed and exclude
the ones that are not required for their application.

If the Application also uses OS Changer products, additional configuration may be
necessary. Please refer to the individual OS Changer documents.

Installing OS Abstractor Products

To install OS Abstractor products:

1. From OS PAL main menu, click on the Generate Standalone product button or
select Tools > Generate Standalone on OS PAL main page.

2. Select the Target OS from the list and click Next.
3. Select the OS Changer or OS Abstractor products needed to create the standalone

project and click Next.
4. Select the destination path to save the generated package and click Finish.

The successful standalone generation is displayed on Generator Verification window.

How to Use OS Abstractor

The steps for using OS Abstractor are described in the following generic form:

1. Include osabstractor.h in all your application source files.
2. Set the appropriate compiler switches within the project build files to indicate the

target OS and other target configurations
3. Configure the pre-processor defines found in the osabstractor_usr.h header file under

each target OS folder to applications requirements
4. Initialize the OS Abstractor library by calling OS_Application_Init() function. If you are

also using POSIX OS Abstractor, then also use OS_Posix_Init() function call to initialize
the POSIX component as well. If you use OS Changer(s), you may need to call other
appropriate initialization functions as well. After initialization, create your initial
application resources and start the application’s first task. After this and within the

Programmers Guide For MapuSoft Standalone Products

12

main thread, call OS_Application_Wait_For_End() function to suspend the main thread
and wait for application re-start or termination requests.

5. Compile and link your application using appropriate development tools.
6. Download the complete application image to the target system and let it run.

Refer to the sample demo applications provided with OS Abstractor as a reference point to
start your application. Please review the target processor and appropriate development tools
documentation for additional information, including specific details on how to use the
compiler, assembler, and linker.

Building BASE OS Abstractor Library

Before using OS Abstractor, make sure the OS and tools are configured correctly for your
target. To ensure this, compile, link and execute a native sample demo application that is
provided by the OS vendor on your target. Refer to the OS vendor provided documentation
on how to compile, link, download, and debug the demo applications for your specific target
and toolset. After this step, you are ready to use the OS Abstractor library to develop your
applications.

Building BASE OS Abstractor Demo Application

The demo application is located at the \mapusoft\demo\osabstractor directory location.
From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building POSIX OS Abstractor

Before building the POSIX OS Abstractor library and/or application, ensure that the flags
INCLUDE_OS_POSIX and INCLUDE_OS_PROCESS are set to OS_TRUE in the
osabstractor_usr.h configuration file.

Building POSIX OS Abstractor Library

The POSIX OS Abstractor library is located at \mapusoft\osabstractor_posix directory.
From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building POSIX OS Abstractor Demo Application

The demo application is located at the \mapusoft\demo_osabstractor_posix directory
location. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory. We need to have the
Base OS Abstractor Library. It has to be included in all the OS Changer/Abstractor demos.
After every demo application, include/link in the POSIX base Abstractor library.

Programmers Guide For MapuSoft Standalone Products

13

Building micro-ITRON OS Abstractor

Before building the micro-ITRON OS Abstractor library and/or application, ensure that the
flag INCLUDE_OS_UITRON is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building micro-ITRON OS Abstractor Library

The micro-ITRON OS Abstractor library is located at \mapusoft\ uitron_osabstractor
directory. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building micro-ITRON OS Abstractor Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_uitron directory
location. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building VxWorks OS Changer

Before building the VxWorks OS Changer library and/or application, ensure that the flag
INCLUDE_OS_VxWorks is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building VxWorks OS Changer Library

The VxWorks OS Changer library is located at \mapusoft\ VxWorks_osabstractor directory.
From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building VxWorks OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_VxWorks directory
location. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Programmers Guide For MapuSoft Standalone Products

14

Building pSOS OS Changer

Before building the pSOS OS Changer library and/or application, ensure that the flag
INCLUDE_OS_pSOS is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building pSOS OS Changer Library

The pSOS OS Changer library is located at \mapusoft\ pSOS_osabstractor directory. From
this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building pSOS OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_pSOS directory
location. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building Nucleus OS Changer

Before building the Nucleus OS Changer library and/or application, ensure that the flag
INCLUDE_OS_Nucleus is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building Nuceus OS Changer Library

The pSOS OS Changer library is located at \mapusoft\ Nucleus_osabstractor directory.
From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to
be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make
file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building Nucleus OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_Nucleus directory
location. From this location, you will find the make files or project files at the appropriate
specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be
built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file
location will be at specific\nucleus\visual_studio_6\x86 directory.

Programmers Guide For MapuSoft Standalone Products

15

Chapter 3.OS Changer Framework
This chapter contains the following topics:

 About OS Changer
 How to Use OS Changer
 Conditional Compilations
 Porting Applications from Legacy Code to Target OS
 OS Changer Defines
 API Variations

Programmers Guide For MapuSoft Standalone Products

16

Introduction to OS Changer

OS Changer is designed for use as a C library. Services used inside your application
software are extracted from the OS Changer and TARGET OS libraries, and, are then
combined with the other application objects to produce the complete image.
For more information on OS Changer Frame work, refer to the OS Changers section of this
document.

About OS Changer

OS Changer provides extensive support to various common proprietary libraries widely used
by the application developers. Further, developers can utilize the native TARGET OS
interface as well. This works toward getting the migration effort faster, much easier and
greatly reduce time-to-market period.

OS Changer is optimized to take full advantage of the underlying TARGET RTOS features. It
is built to be totally independent of the target hardware and all the development tools (like
compilers and debuggers).

Please note that there may be some minor implementation differences in some of the OS
Changer APIs when compared to the native API’s. This may be as a result of any missing
features within the underlying RTOS that OS Changer provides migration to.

Legacy Application

Nucleus PLUS
OS Changer

OS Abstractor for Target
OS

Target Operating System

Nucleus
NET

OS Changer

Figure 1: An example NUCLEUS OS Changer and Target OS Integration

Your legacy application can be re-usable and also portable by the support provided by the
OS Changer library and the OS Abstractor library. Applications can directly use the native
target OS API, however doing so will not make your code portable across operating systems.
We recommend that you use the optimized abstraction APIs for the features and support
that are not provided by the OS Changer compatibility library.

NOTE: For more information on configuration and target OS specific information, see OS
Abstractor Developer section of this document.

Programmers Guide For MapuSoft Standalone Products

17

How to Use OS Changer

OS Changer is designed for use as a C library. Services used inside your application
software are extracted from the OS Changer and TARGET OS libraries, and, are then
combined with the other application objects to produce the complete image. This image can
be loaded to the target system or placed in ROM on the target system.

The steps for using OS Changer are described in the following generic form:

 Remove the TARGET RTOS header file defines from all the TARGET RTOS source
files.

 Remove definitions and references to all the TARGET RTOS configuration data
structures in your application.

 Include the OSChanger_ TARGET RTOS.h (For example, OSChanger_Nucleus.h in
case of OS Changer Nucleus) and osabstractor.h in the source files.

 Modify the OS Changer init code (see sample provided) and the TARGET RTOS root
task of your application appropriately. (For example, Application_Initialize)

 Compile and link your application using appropriate development tools. Resolve all
compiler and linker errors.

 Port the underlying low-level drivers to Target OS.

 Load the complete application image to the target system and run the application.

 Review the processor and development system documentation for additional
information, including specific details on how to use the compiler, assembler, and
linker.

Conditional Compilations

For more information on target specific configuration, refer to the OS Abstractor Developer
section of this document.

Programmers Guide For MapuSoft Standalone Products

18

Porting Applications from Legacy Code to Target OS

In most applications, using OS Changer is straight forward. The effort required in porting is
mostly at the underlying driver layer. Since we do not have specific information about your
application, it will be hard to tell how much work is required. However, we want you to be
fully aware of the surrounding issues upfront so that necessary steps could be taken for a
successful and timely porting. It is possible that we have not addressed all your application
specific issues, so for further information, contact MapuSoft Technologies.

OS Changer Defines

The OS Changer library contains the following respective header files:

Module Description
OSCHANGER_VXWORKS.H This header file is required in all of the vxworks

source modules. This header file provides the
translation layer between the vxworks defines,
APIs and parameters to OS Abstraction.

OSCHANGER_PSOS.H This header file is required in all of the PSOS
source modules. This header file provides the
translation layer between the pSOS defines, APIs
and parameters to OS Abstraction.

OSCHANGER_NUCLEUS.H This header file is required in all of the Nucleus
PLUS source modules. This header file provides
the translation layer between the Nucleus PLUS
defines, APIs and parameters to OS Abstraction.

UITRON_OSABSTRACTOR.H This header file is required in all of the micro-
ITRON source modules. This header file provides
the translation layer between the micro-ITRON
defines, APIs, and parameters to OS Abstraction

The OS Changer demo contains the following modules:

Module Description
DEMO.C Contains a sample demo application

You will find relevant make/project files for a specific RTOS in the specific RTOS directory
following where you find the demo and the Changer library modules.

Programmers Guide For MapuSoft Standalone Products

19

 API Variations

Since API support is being added in each release, contact MapuSoft to get up-to-date
support information for the latest OS Changer version.

Error Handling

Applications receive a run-time error via the OS_Fatal_Error() function on some occasions.
This happens due to:

 Unsupported API function call, or

 Unsupported parameter value or flag option in a API call, or

 Error occurred on the target OS for which there are no matching error codes in OS
Abstractor.

OS Changer calls OS_Fatal_Error and passes along an error code and error string. The
OS_Fatal_Error handling function is fully customizable to the application needs. At the
moment it prints the error message if the OS_DEBUG_INFO conditional compile option is
set, then OS_Fatal_Error does not return. For more details on error handling and definition
of this function, refer to the OS Abstractor Reference Guide. The non-zero value in the error
code corresponds to the underlying RTOS API error. Refer to the target OS documentation
for a better description of the error. Error Handling section lists the errors and the reasons
for the occurrence.

Programmers Guide For MapuSoft Standalone Products

20

Chapter 4.Using OS Abstractor
with Native Tools

This chapter contains the information about the System Configuration with the following
topics:

 OS Abstractor Tool Sets

 Using OS Abstractor under GNU Makefile Environment

 Building with Eclipse IDEError! Bookmark not defined.

 Building with Windriver Workbench

 Building with QNX Momentics

 Building Visual Studio 6.0

Programmers Guide For MapuSoft Standalone Products

21

OS Abstractor Tool Sets

OS Abstractor can be used in a multitude of toolsets. The distribution only includes project
files for a small subset of the tools that OS Abstractor can be used with. If the project files
for the tools you are using are not included, please contact MapuSoft to set up OS
Abstractor for your tools.

Target
Operating
System

Project Files
Included

Project File Paths

Eclipse \osabstractor_windows\specific\windows_xp\Windows
Visual Studio
6.0

\osabstractor_windows\specific\windows_xp\
x86\visual_studio_6

Eclipse \osabstractor_linux\specific\linux\x86\eclipsLinux
Make \osabstractor_linux\specific\linux\x86\make

Solaris Eclipse \osabstractor_solaris\specific\solaris\x86\ecl
ipse

Make \osabstractor_solaris\specific\solaris\x86\gn
u

QNX Momentics \osabstractor_qnx\specific\qnx\x86\momenti
cs

VxWorks Windriver
Workbench

\osabstractor_vxworks\specific\vxworks_rtp\
x86\workbench_gnu
\osabstractor_vxworks\specific\vxworks_kern
el\x86\workbench_gnu

LynxOS Make \osabstractor_lynxos\specific\lynxos\x86\gn
u

MQX Metaware \osabstractor_mqx\specific\mqx\arc\metawa
re

Eclipse \osabstractor_threadx\specific\threadx\x86\ThreadX
Visual Studio
6.0

\osabstractor_threadx\specific\threadx\x86\
visual_studio_6

Eclipse \osabstractor_nucleus\specific\nucleus\mnt\Nucleus
Visual Studio
6.0

\osabstractor_nucleus\specific\nucleus\mnt\
visual_studio_6

Renasas \osabstractor_uitron\specific\sh\hewmicro-
ITRON

Programmers Guide For MapuSoft Standalone Products

22

The included project files for Windows, Linux, Solaris, QNX and LynxOS are setup to be used
directly on the target operating system. The project files for VxWorks and MQX are setup to
utilize the tools built in simulated environment. Nucleus, ThreadX, and micro-ITRON require
separate OS files and simulators are provided in the following directories. These supporting
projects need to be included in the workspace and built in conjunction with OS Abstractor.

Target Operating
System

Supporting Files

Nucleus \osabstractor_nucleus\specific\nucleus\mnt\mnt

ThreadX \osabstractor_threadx\specific\threadx\x86\threadx
_win32

micro-ITRON \osabstractor_uitron\specific\sh\uitron_kernel

Using OS Abstractor under GNU Makefile Environment

Example: Build and execute application using OS Abstractor Library

NOTE: This example assumes all the source code, library, and makefile are in the following
file structure:

OSabstractor_application
 demo_osabstractor

 include
 source
 specific

linux
 x86
 gnu
 Makefile

 include include
 osabstractor_linux

 include
 source
 specific

 linux
 x86
 gnu
 Makefile

1. The rest of this topic will assume that your osabstractor_application directory is under
the root directory.

2. To build the osabstractor library, open up a terminal and type:
$cd /root/osabstractor_application/osabstractor_linux/specific/linux/x86/gnu
$make clean all ROOT_DIR=/root/osabstractor_application/
NOTE: After the compilation is completed, you should see a folder called “lib” under
folder “osabstractor_application” which has the “libosabstractor_linux.a” file.

3. To build the osabstractor demo, open up a terminal and type:
$cd /root/osabstractor_application/demo_osabstractor/specific/linux/x86/gnu/
$make clean all ROOT_DIR=/root/osabstractor_application/

Programmers Guide For MapuSoft Standalone Products

23

NOTE: After the compilation is completed, you should see “osabstractor_linux_demo”
executable file under directory
“/root/osabstractor_application/demo_osabstractor/specific/linux/x86/gnu/”

4. To execute/debug the demo executable, open up a terminal and type:
$cd /root/ osabstractor_application / demo_osabstractor/ specific/linux/x86/gnu/
$gdb osabstractor_linux_demo
$run
NOTE: If you need to modify the makefiles that build the demo application and the
libraries, make sure you use an editor that will NOT add the carriage return character
(each line should only have the line feed character), otherwise the ‘make’ utilities will
not work correctly. To remove the carriage return character that was introduced by
some editors, run the dos2unix utility to convert the dos format text file to unix
format.

Building with Eclipse IDE

The eclipse specific project files are located in \<specific>\<OS>\<arch>\eclipse\ where
“OS” is the corresponding target operating system and “arch” is corresponding architecture.
For instance, if you need the demo application to be built for linux using eclipse tools x86
target, then the corresponding eclipse project file can be located in
.\demo_osabstractor\specific\linux\x86\eclipse directory.
The Eclipse framework with CDT can be downloaded from
http://www.eclipse.org/downloads/

To install Eclipse, follow the instructions at http://wiki.eclipse.org/Eclipse/Installation

To configure this macro in eclipse:
1. Select Preferences under the Window menu.
2. Expand General > Workspace and select Linked Resources node.
3. Click New and enter ROOT_DIR for the name and the full path to the workspace

root.

To import the project files in Eclipse:
1. Select Import from File menu.
2. Expand General folder.
3. Select Existing Projects into Workspace and click Next.
4. Click Browse and navigate to the location of the project file.
5. The project name should appear under Projects.
6. Select the project to import and click Next.

To build the OS Abstractor library:
1. Select OS Abstractor project file.
2. Choose Build Project from the Project menu.

To build the OS Abstractor Demo:
1. Select OS Abstractor Demo project file.
2. Choose Build Project from the Project menu.

To debug the OS Abstractor Demo:
1. Select OS Abstractor Demo project file.
2. Choose Open Debug Dialog from the Run menu.
3. Select C/C++ Local Application.
4. Click New Launch Configuration.
5. Click Run.

Programmers Guide For MapuSoft Standalone Products

24

Building with Windriver Workbench

The Windriver Workbench specific project files are of two types: kernel type projects and
RTP type projects are located in .\<specific>\<OS>\<arch>\workbench_gnu. i.e,
specific\vxworks_kernel\x86\workbench_gnu for kernel projects
and.\specific\vxworks_rtp\x86\workbench_gnu\RTP respectively. For instance, if you need
the demo application to build Kernel type projects, then the corresponding workbench
project file can be located in
\demo_osabstractor\specific\vxworks_rtp\x86\workbench_gnu directory.

The included project files require a path variable macro called ROOT_DIR to be defined.

To configure this macro in eclipse:
1. Select Preferences under the Window menu.
2. Then expand General->Workspace and select Linked Resources node.
3. Click New and enter ROOT_DIR for the name and the full path to the workspace

root.

NOTE: Please refer Workbench documentation on how to build and debug.

Building with QNX Momentics

The QNX Momentics related project files are located in
\<specific>\<OS>\<arch>\momentics where “OS” is the corresponding target operating
system and “arch” is corresponding architecture. For instance, if you need the demo
application to be built for QNX using Momentics tools and x86 target, then the
corresponding Momentics project file can be located in
\demo_osabstractor\specific\qnx\x86\momentics\ directory.

The included project files require a path variable macro called ROOT_DIR to be defined.

To configure this macro in eclipse:
1. Select Preferences under the Window menu.
2. Then expand General->Workspace and select Linked Resources node.
3. Click New and enter ROOT_DIR for the name and the full path to the workspace

root.

To import the project files in Eclipse:
1. Select Import from File menu.
2. Expand General folder.
3. Select Existing Projects into Workspace and click Next.
4. Click Browse and navigate to the location of the project file.
5. The project name should appear under Projects.
6. Select the project to import and click Next.

NOTE: Please refer Momentics documentation on how to build and debug.

Programmers Guide For MapuSoft Standalone Products

25

Building with Visual Studio 6.0

The Visual Studio 6.0 specific project files are located in
\<specific>\<OS>\<arch>\visual_studio_6\.where OS is the corresponding target
operating system and arch is corresponding architecture. For instance, if you need the
demo application to be built for Windows XP using visual studio 6.0 tools and x86 target,
and then the corresponding visual studio project files can be located in
\specific\windows_xp\x86\visual_studio_6 directory.

To import the project files in Visual Studio 6.0 do the following
1. Select New from File menu to create a new workspace.
2. Select Workspaces tab.
3. Enter a workspace name into the Workspace name text box.
4. Set the path to the root of location of the Mapusoft products.
5. Click OK.
6. In Workspace window choose File View tab.
7. Right click on Workspace <project name> tree node in the Workspace window

and select Insert Project into Workspace.
8. Browse to the *.dsp you want to add to the project and click OK.

To build the OS Abstractor library:
1. Right click on the OS Abstractor project file.
2. Select Build from the pop-up menu.

To build the OS Abstractor Demo:
1. Right click on the OS Abstractor Demo project file.
2. Select Build from the pop-up menu.

To debug the OS Abstractor Demo:

1. Right click on the OS Abstractor Demo project file.
2. Select Set as active project from the pop-up menu.
3. Click F5 key on your keyboard.

Programmers Guide For MapuSoft Standalone Products

26

Chapter 5. System Configuration
This chapter contains the information about the System Configuration with the following
topics:

 System Configuration

 Target OS Selection

 OS HOST Selection

 Target 64 bit CPU Selection

 User Configuration File Location

 OS Changer Components Selection

 POSIX OS Abstractor Selection

 OS Abstractor Process Feature Selection

 OS Abstractor Task-Pooling Feature Selection

 OS Abstractor Profiler Feature Selection

 OS Abstractor Output Device Selection

 OS Abstractor Debug and Error Checking

 OS Abstractor ANSI API Mapping

 OS Abstractor Resource Configuration

 OS Abstractor Minimum Memory Pool Block Configuration

 OS Abstractor Application Shared Memory Configuration

 OS Abstractor Clock Tick Configuration

 OS Abstractor Device I/O Configuration

 OS Abstractor Target OS Specific Notes

Programmers Guide For MapuSoft Standalone Products

27

System Configuration

The user configuration is done by setting up the appropriate value to the pre-processor
defines found in the osabstractor_usr.h.

NOTE: Make sure the OS Abstractor libraries are re-compiled and newly built whenever
configuration changes are made to the osabstractor_usr.h when you build your application.
In order to re-build the library, you would actually require the full-source code product
version (not the evaluation version) of OS Abstractor.

Applications can use a different output device as standard output by modifying the
appropriate functions defines in osabstractor_usr.h along with modifying
os_setup_serial_port.c module if they choose to use the format I/O calls provided by the OS
Abstractor.

Target OS Selection

Based on the OS you want the application to be built, set the following pre-processor
definition in your project setting or make files:

Flag and Purpose Available Options
OS_TARGET
To select the target
operating system.

The value of the OS_Target should be for the OS
Abstractor product that you have purchased. For
Example, if you have purchased the license for :
OS_NUCLEUS – Nucleus PLUS from ATI
OS_THREADX – ThreadX from Express Logic
OS_VXWORKS – VxWorks from Wind River Systems
OS_ECOS – eCOS standards from Red Hat
OS_MQX - Precise/MQX from ARC International
OS_UITRON – micro-ITRON standard based OS
OS_PSOS – pSOS systems from Wind River Systems
OS_LINUX - Open-source/commercial Linux
distributions
OS_WINDOWS – Windows 2000, Windows XP,
Windows CE, Windows Vista from Microsoft. If you need
to use the OS Abstractor both under Windows and
Windows CE platforms, then you will need to purchase
additional target license.
OS_TKERNEL – Japanese T-Kernel standards based
OS
OS_LYNXOS - LynxOS from LynuxWorks
OS_QNX – QNX operating system from QNX
OS_LYNXOS – LynxOS from Lynuxworks
OS_SOLARIS – Solaris from SUN Microsystems

For example, if you want to develop for ThreadX, you
will define this flag as follows:
OS_TARGET = OS_THREADX
PROPRIETARY OS: If you are doing your own porting of
OS Abstractor to your proprietary OS, you could add
your own define for your OS and include the appropriate
OS interface files within osabstractor.h file. MapuSoft can
also add custom support and validate the OS Abstraction
solution for your proprietary OS platform

Programmers Guide For MapuSoft Standalone Products

28

OS HOST Selection

The flag has to be false for standalone generation.

OS_HOST
To select the host
operating system

This flag is used only in OS PAL environment. It is not
used in the target environment. In Standalone products,
this flag should be set to OS _FALSE.

Target 64 bit CPU Selection

Based on the OS you want the application to be built, set the following pre-processor
definition in your project setting or make files:

Flag and Purpose Available Options
OS_CPU_64BIT
To select the target CPU
type.

The value of OS_CPU_64BIT can be any ONE of
the following:
OS_TRUE – Target CPU is 64 bit type CPU
OS_FALSE – Target CPU is 32 bit type CPU

NOTE: This value cannot be set in the
osabstractor_usr.h, instead it needs to be
passed to compiler as –D macro either in
command line for the compiler or set this pre-
processor flag via the project settings. If this
macro is not used, then the default value used
will be OS_FALSE.

Programmers Guide For MapuSoft Standalone Products

29

User Configuration File Location

The default directory location of the osabstractor_usr.h configuration file is given below:

Target OS Configuration Files Directory Location
OS_NUCLEUS \mapusoft\osabstractor_nucleus\include

OS_THREADX \mapusoft\osabstractor_threadx\include

OS_VXWORKS \mapusoft\osabstractor_vxworks\include
Please make sure you specify the appropriate
target OS versions that you use in the
osabstractor_usr.h

OS_MQX \mapusoft\osabstractor_mqx\include

OS_UITRON \mapusoft\osabstractor_uitron\include

OS_LINUX \mapusoft\osabstractor_linux\include
Please make sure you specify the appropriate
target OS versions that you use in the
osabstractor_usr.h
NOTE: RT Linux, for using rtlinux you need to
select this option.

OS_SOLARIS \mapusoft\osabstractor_solaris\include

OS_WINDOWS \mapusoft\osabstractor_windows\include
Any windows platform including Windows CE
platform. If you use OS Abstractor under both
Windows and Windows CE, then you would
require additional target license.
NOTE: Windows 2000, Windows XP, Windows
CE, Windows Vista from Microsoft

OS_ECOS \mapusoft\osabstractor_ecos\include

OS_LYNXOS \mapusoft\osabstractor_lynxos\include

OS_QNX \mapusoft\osabstractor_qnx\include

OS_TKERNEL \mapusoft\osabstractor_tkernel\include

If you have installed the MapuSoft’s products in directory location other than mapusoft then
refer the corresponding directory instead of \mapusoft for correct directory location.

Programmers Guide For MapuSoft Standalone Products

30

OS Changer Components Selection

OS Abstractor optional comes with various OS Changer API solutions in addition to its
BASE and POSIX API offerings. OS Changer APIs are used to port legacy code base from one
OS to another. Select one or more OS Changer components depending on the type of code
that you needed to port to one or more new operating system platforms. Set the pre-
processor flag below to select the components needed by your application:

Flag and Purpose Available Options
INCLUDE_OS_VXWORKS
To include VxWorks OS
Changer product. Refer to
the appropriate OS
Changer manual for more
details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE

INCLUDE_OS_PSOS
To include pSOS OS
Changer product. Refer to
the appropriate OS
Changer manual for more
details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE

INCLUDE_OS_PSOS_CLAS
SIC
To include a very old
version of pSOS OS
Changer product. Refer to
the appropriate OS
Changer manual for more
details.

OS_TRUE – Include support for pSOS 4.1 rev
3/10/1986
OS_FALSE – do not include pSOS 4.1 support
The default is OS_FALSE

INCLUDE_OS_NUCLEUS
To include Nucleus PLUS
OS Changer product. Refer
to the appropriate OS
Changer manual for more
details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE.

INCLUDE_OS_NUCLEUS_N
ET
To include Nucleus NET OS
Changer product. Refer to
the appropriate OS
Changer manual for more
details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE.

INCLUDE_OS_UITRON
To include micro-ITRON OS
Abstractor product.
Refer to the appropriate OS
Abstractor manual for more
details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE.

INCLUDE_OS_FILE
To include ANSI file system
API compliance for the
vendor provided File
Systems. Refer to the
appropriate OS Changer
manual for more details.

OS_TRUE – Include support
OS_FALSE – Do not include support
The default is OS_FALSE.

This option is only available for Nucleus PLUS
target OS

Programmers Guide For MapuSoft Standalone Products

31

NOTE: For additional information regarding how to use any specific OS Changer product,
refer to the appropriate reference manual or contact www.mapusoft.com.

POSIX OS Abstractor Selection

OS Abstractor optionally comes with POSIX support as well. Set the pre-processor flag
provided below to select the POSIX component for application use as follows:

Flag and Purpose Available Options
INCLUDE_OS_POSIX
To include POSIX OS
Abstractor product
component.

OS_TRUE – Include support. You will need this
option turned ON either if the underlying OS
does not support POSIX (or) you need to POSIX
provided by OS Abstractor instead of the POSIX
provided natively by the target OS
OS_FALSE – Do not include support
The default is OS_FALSE.

NOTE: The above component can be used across POSIX based and non-POSIX based target
OS for gaining full portability along with advanced real-time features. POSIX OS Abstractor
library will provide the POSIX functionality instead of application using POSIX
functionalities directly from the native POSIX from the OS and as a result this will ensure
that your application code will work across various POSIX/UNIX based target OS and also
its various versions while providing various real-time API and performance features. In
addition, OS Abstractor will allow the POSIX application to take advantage of safety critical
features like task-pooling, fixing boundary for application’s heap memory use, self recovery
from fatal errors, etc. (these features are defined else where in this document). For added
flexibility, POSIX applications can also take advantage of using BASE OS Abstractor APIs
non-intrusively for additional flexibility and features.

OS Abstractor Process Feature Selection

Flag and Purpose Available Options
INCLUDE_OS_PROCESS OS_TRUE – Include OS Abstractor process

support APIs and track resources under each
process and also allow multiple individually
executable applications to use OS Abstractor
OS_FALSE – Do not include process model
support. Use this option for optimized OS
Abstractor performance

The default is OS_FALSE

The INCLUDE_OS_PROCESS option is useful when there are multiple developers writing
components of the applications that are modular. The resource created by the process is
automatically tracked and when the process goes away they also go away. One process can
use another process resource, only if that process is created with “system” scope. A process
cannot delete a resource that it did not create.

The INCLUDE_OS_PROCESS feature can also be used on target OS like VxWorks 5.x a non-
process based operating system. In this case, the OS Abstractor provides software process
protection. Under process-based OS like Linux, the processes created by the OS Abstractor
will be an actual native system processes.

Programmers Guide For MapuSoft Standalone Products

32

The INCLUDE_OS_PROCESS feature is also useful to simulate complex multiple embedded
controller application on x86 single processor host platform. In this case, each individual
process/application will represent individual controllers, which uses a shared memory
region for inter-communication. This application could then be ported to the real multiple
embedded controller environments with shared physical memory.

For more information regarding the process feature, refer to the section titled “Process
Support” in the “Function Reference” chapter in this manual.

Process Feature use within OS Changer
It is possible for legacy applications to use the process feature along with OS Changer and
take advantage of process protection mechanism and also have the ability to break down
the complex application into multiple manageable modules to reduce complexity in code
development. However, when porting legacy code, we recommend that the application be
first ported to a single process successfully. Once this is completed, then the application
can be modified to move the global data to shared memory and can be made to easily reside
into individual process and or multiple executables.

To allow the legacy applications to be broken down into process modules and/or multiple
applications the flag INCLUDE_OS_PROCESS needs to be set to OS_TRUE. Also the
application needs to use OS_Create_Process envelopes to move the resources to appropriate
processes. Legacy application can also make in multiple applications which then compile
separately and can continue to use OS Changer APIs for inter-process communication. OS
Changer APIs provides transparency to the application and allows the application to use the
API among resources within a single process or multiple processes/applications.

OS Abstractor Task-Pooling Feature Selection

Task-Pooling feature enhances the performances and reliability of application. Creating a
task (thread) at run-time require considerable system overhead and memory. The
underlying OS thread creation function call can take considerable amount of time to
complete the operation and could fail if there is not enough system memory. Enabling this
feature, Applications can create OS Abstractor tasks during initialization and be able to re-
use the task envelope again and again. To configure task-pooling, set the following pre-
processor flag as follows:

Flag and Purpose Available options
INCLUDE_OS_TASK_POOLI
NG

OS_TRUE – Include OS Abstractor task pooling
feature to allow applications to re-use task
envelops from task pool created during
initialization to eliminate run-time overhead with
actual resource creation and deletion

OS_FALSE – Do not include task pooling support

The default is OS_FALSE

Except for the performance improvement, this behavior will be transparent to the
application. Each process/application will contain its own individual task pool. Any process,
which requires a task pool, must successfully add tasks to the pool before it can be used.
Tasks can be added to (via OS_Add_To_Task_Pool function) or removed (via
OS_Remove_From_Task_Pool function) from a task pool at anytime.

Programmers Guide For MapuSoft Standalone Products

33

When an application makes a request to use a pool task, OS Abstractor will first search for
a free task in the pool with an exact match based on stack size. If it does not find a match,
then a free task with the next larger stack size that is available will be used. If there are
multiple requests pending, a search will be made in FIFO order on the request list when a
task is freed to the pool. The first request that matches or fulfills the stack requirement will
then be fulfilled.

Refer to the MapuSoft supplied os_application_start.c file that came with the MapuSoft’s
demo application. The demo application pre-creates a bunch of fixed-stack-size (using
STACK_SIZE as defined in osabstractor_def.h) task-pool-task as shown below:

#if (INCLUDE_OS_TASK_POOLING == OS_TRUE)
for(i = 0; i < Max_Threads; i++)
{
OS_Add_To_Task_Pool(STACK_SIZE); /*this is a portion of code in
init.c,

STACK_SIZE should be changed
according to the desired stack size

}
#endif

Typically, applications would need a variety of threads with different stack size. If you would
like to modify the demo application to use threads with larger or differing stack size, make
sure you modify the os_application_start.c file according to your needs.

The OS_Create_Task function will be used to retrieve a task from the task pool. This will be
accomplished by passing one of the flags OS_POOLED_TASK_WAIT or
OS_POOLED_TASK_NOWAIT as a parameter to OS_Create_Task. When a task has
completed and either exits, falls through itself or gets deleted by another task using the
OS_Delete_Task function, the task will automatically be freed to be used again by the task
pool. For further details, please refer to the OS_Create_Task specification defined in the
following pages.

An Application can add or remove tasks with a specified stack size to the task pool at any
time. The task pool will grow or shrink depending on each addition or deletion of tasks in
the task pool. The Application cannot remove a valid task, which does not belong to the task
pool. OS_Get_System_Info function can be used to retrieve the system configuration and
run-time system status including information related to task pool.

If OS_TASK_POOLING is enabled, then all tasks POSIX threads created using the POSIX OS
Abstractor POSIX APIs provided by POSIX OS Abstractor with POSIX and/or any task
creation created using task create functions in any OS Changer products will automatically
use the task pool mechanism with the flag option set to OS_POOLED_TASK_NOWAIT.

Warning: Your application will fail during task creation if OS_TASK_POOLING is enabled
and you have not added any tasks to the task pool. Make sure you add tasks (via
OS_Add_To_Task_Pool function) with all required stack sizes prior to creating pooled tasks
(via OS_Create_Task function).

Special Notes: Task Pooling feature is not supported in ThreadX and Nucleus targets.

Programmers Guide For MapuSoft Standalone Products

34

OS Abstractor Profiler Feature Selection

The following are the user configuration options that can be set in the osabstractor_usr.h:

Flag and Purpose Available Options
OS_PROFILER

Profiler feature allows
applications running on the
target to collect valuable
performance data regarding
the application’s usage of
the OS Abstractor APIs.

Using the OS PAL tool, this
data can then be loaded and
analyzed in graphical
format. You can find out
how often a specific OS
Abstractor API is called
across the system or within
a specific thread. You can
also find out how much time
the functions took across
the whole system as well as
within a specific thread

Profiler feature uses high
resolution clock counters to
collect profiling data and
this implementation may not
be available for all target
CPU and OS platforms.
Please contact MapuSoft for
any custom high resolution
timer implementation
required for the profiler for
your target/OS
environment. Refer to
OS_Get_Hr_Clock_Freq() and
OS_Read_Hr_Clock() for
additional details on what
target/OS platforms are
currently supported by the
profiler.

The current release provides
profiling capabilities for
BASE OS Abstractor APIs
only. The future releases will
add support for POSIX OS
Abstractor or OS Changer
APIs.

Can either be:
OS_TRUE – Profiler feature will be included.
Profiling takes place with each BASE OS
Abstractor API call. If profiler is turned on, also
set the value for the following defines:
PROFILER_TASK_PRIORITY
The priority level (0 to 255) of the profiler
thread.The profiler thread starts picking up the
messages in the profiler queue, formats them
into XML record and write to file. If the priority is
set to the lowest (i.e, 255), then the profiler
thread may not have an opportunity to pick the
message from the queue in time and as such the
queue gets filled up and as such the profiler will
stop. The default profiler task priority value is set
to 200.

NUM_OF_MSG_TO_HOLD_IN_MEMORY
This will be the depth of the profiler queue. The
bigger the number, the more the memory is
needed. A maximum of 30,000 profiler records
can be created. Please make sure you increase
you application’s heap size by
NUM_OF_MSG_TO_HOLD_IN_MEMORY times
PROFILER_MSG_SIZE in the OS_Application_Init
call.

PROFILER_DATAFILE_PATH
This will be the directory location where the
profiler file will be created. The default location
set is “/root”.

OS_FALSE – Profiler code will be excluded and
the feature will be turned off.

The default value is OS_FALSE.

Programmers Guide For MapuSoft Standalone Products

35

If profiler feature is turned
ON, then it needs to use the
open/read/write calls to
write to profiler data file. If
you set OS_MAP_ANSI_IO to
OS_TRUE then make sure
you install the appropriate
file device and driver.

The profiler starts as soon as the application starts and will continue to collect performance
data until the memory buffers in the profiler queue gets filled up. After, this the profiling
stops and data is dumped into *.pal files at the user specified location. It is recommended
that the profiler feature be turned off for the production release of your application.

If the profiler feature is turned OFF, then the profiler hooks disappear within the OS
Abstractor and as such there are no impacts to the OS Abstractor API performance.

Special Notes: Profiler feature is not supported in ThreadX and Nucleus targets.

OS Abstractor Output Device Selection

The following are the user configuration options and their meanings:

Flag and Purpose Available options
OS_STD_OUTPUT Output device to print.

OS_SERIAL_OUT – Print to serial
OS_WIN_CONSOLE – Print to console
User can print to other devices by modifying the
appropriate functions within
os_setup_serial_port.c in the OS Abstractor
“source” directory and use OS Abstractor’s
format i/o calls.
The default value is OS_WIN_CONSOLE

OS Abstractor Debug and Error Checking

Flag and Purpose Available Options
OS_DEBUG_INFO OS_TRUE – print debug info, fatal and

compliance errors
OS_FALSE – do not print debug info

The default value is OS_TRUE
OS_ERROR_CHECKING OS_TRUE – Check for API usage errors

OS_FALSE – do not check for errors. Use this
option to increase performance and reduce code
size

The default value is OS_TRUE
OS_IGNORE_FATAL_ERRO
R

OS_TRUE – Return from OS_Fatal_Error()
OS_FALSE – Stop execution when a fatal error
occurs
The default value is OS_FALSE

Programmers Guide For MapuSoft Standalone Products

36

OS Abstractor ANSI API Mapping

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

Flag and Purpose Available options
MAP_OS_ANSI_MEMORY OS_TRUE – map ANSI malloc() and free() to OS

abstractor equivalent functions
OS_FALSE – do not map functions. Also, when
you call OS_Application_Free in this case, the
memory allocated via malloc() calls will NOT be
automatically freed.

The default value is OS_TRUE
NOTE: Refer to OS_USE_EXTERNAL_MALLOC
define, if you want to connect your own memory
management solution for use by OS Abstractor

MAP_OS_ANSI_FMT_IO OS_TRUE – map ANSI printf() and sprintf() to
OS abstractor equivalent functions
OS_FALSE – do not map functions

The default value is OS_FALSE
MAP_OS_ANSI_IO1 OS_TRUE – map ANSI device I/O functions like

open(), close(), read(), write, ioctl(), etc. to OS
abstractor equivalent functions
NOTE: If your target OS is NOT a single-memory
model based (e.g. Windows, Linux, QNX, etc.),
then the OS Abstractor I/O functions are to be
used within one single process/application.. If
you need to use the I/O across multiple
process, then set this define to OS_FALSE so
that your application can use the native I/O
APIs from the OS

OS_FALSE – do not map functions

The default value is OS_FALSE

NOTE: When you set MAP_OS_ANSI_IO to OS_TRUE, OS Abstractor automatically replaces
open() calls to OS_open() during compile time when you include osabstractor.h in
your source code. If you set MAP_OS_ANSI_IO to OS_FALSE, then in your source code when
you include osabstractor.h, application can actually use both OS_open() and open() calls,
where the OS_open will come from OS Abstractor library and open() will come from the
native OS library. Given that OS Abstractor I/O APIs are similar to ANSI I/O, you probably
can use the third option so that you eliminate some performance overhead going
through OS Abstractor I/O wrappers if necessary. But, it is always recommended that
application use BASE OS Abstractor or POSIX APIs instead of directly using native API calls
from OS libraries for maximum portability.

Programmers Guide For MapuSoft Standalone Products

37

OS Abstractor External Memory Allocation

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

Flag and Purpose Available options
OS_USE_EXTERNAL_MALL
OC

OS_TRUE – OS abstractor can be configured to
use an application defined external functions to
allocate and free memory needed dynamically by
the process. In this case, the OS Abstractor will
use these function for allocating and freeing
memory within OS_Allocate_Memory and
OS_Deallocate_Memory functions These external
functions needs to be similar to malloc() and
free() and should be defined within osabstractor
usr.h in order for OS Abstractor to successfully
use them. This feature is useful if the application
has it’s own memory management schemes far
better than what the OS has to offer for dynamic
allocations.
OS_FALSE – OS Abstractor will directly use the
target OS system calls for allocating and freeing
the memory

The default value is OS_FALSE

OS Abstractor Resource Configuration

In addition to OS Abstractor resources used by application, there may be some additional
resources required internally by OS Abstractor. The configuration should take into the
account of these additional resources while configuring the system requirements. All or any
of the configuration parameters set in osabstractor usr.h config file can be altered by
OS_Application_Init function (refer to Chapter 3, Functional Reference for
OS_Application_Init function specification) as well.

The following are the OS Abstractor system resource configuration parameters:

Flag and Purpose Default Setting
OS_TOTAL_SYSTEM_PROCESSES
The total number of processes
required by the application

100

One control block will be used by the
OS_Application_Init function when the
INCLUDE_OS_PROCESS option is true

OS_TOTAL_SYSTEM_TASKS
The total number of tasks required
by the application

100

One control block will be used by the
OS_Application_Init function when the
INCLUDE_OS_PROCESS option is true.

OS_TOTAL_SYSTEM_PIPES
The total number of pipes for
message passing required by the
application

100

OS_TOTAL_SYSTEM_QUEUES
The total number of queues for
message passing required by the
application

100

Programmers Guide For MapuSoft Standalone Products

38

OS_TOTAL_SYSTEM_MUTEXES
The total number of mutex
semaphores required by the
application

100

OS_TOTAL_SYSTEM_SEMAPHOR
ES
The total number of regular
(binary/count) semaphores
required by the application

100

OS_TOTAL_SYSTEM_DM_POOLS
The total number of dynamic
variable memory pools required by
the application

100

One control block will be used by the
OS_Application_Init function when the
INCLUDE_OS_PROCESS option is true.

OS_TOTAL_SYSTEM_PM_POOLS
The total number of partitioned
(fixed-size) memory pools required
by the application

100

OS_TOTAL_SYSTEM_SM_POOLS
The total number of shared
partitioned (fixed-size) memory
pools required by the application

100

OS_TOTAL_SYSTEM_EV_GROUPS
The total number of event groups
required by the application

100

OS_TOTAL_SYSTEM_TIMERS
The total number of application
timers required by the application

100

Programmers Guide For MapuSoft Standalone Products

39

The following are the additional resources required internally by OS Abstractor:

Resources Linux/Unix target VxWorks Target
TASK 1 Event Group required by

BASE OS Abstractor
 1 Event group required if

application uses POSIX OS
Abstractor and/or
VxWorks OS Changer
and/or pSOS OS Changer

1 Event group required if
application uses POSIX POSIX
OS Abstractor and/or
VxWorks OS Changer and/or
pSOS OS Changer

DM_POOL 1 Event Group required by
BASE OS Abstractor

QUEUE 2 Semaphores used by
BASE OS Abstractor

 1 Semaphore used by
POSIX OS Abstractor

1 Semaphore used by POSIX
POSIX OS Abstractor

MUTEX 1 Semaphore used by BASE
OS Abstractor

PROCESS 1 DM_POOL used by BASE
OS Abstractor

1 DM_POOL used by BASE OS
Abstractor

PM_POOL 1 Semaphore is used by
BASE OS Abstractor

Posix
Condition
Variable

 1 Event Group required by
POSIX OS Abstractor

1 Event Group required by
POSIX OS Abstractor

Posix R/W
Lock

 1 Event Group required by
POSIX OS Abstractor

 1 Semaphore required by
POSIX OS Abstractor

 1 Event Group required by
POSIX OS Abstractor

 1 Semaphore required by
POSIX OS Abstractor

If INCLUDE_OS_PROCESS feature is set to OS_FALSE, then the memory will be allocated
from the individual application/process specific pool, which gets created during the
OS_Application_Init function call.

If INCLUDE_OS_PROCESS is set to OS_TRUE, then the memory is allocated from a shared
memory region to allow applications to communicate across multiple processes. Please note
that in this case, the control block allocations cannot be done from the process specific
dedicated memory pool since the control blocks are required to be shared across multiple
applications.

For additional information related to memory definitions, please refer to Chapter 3,
Functional Reference, section Process, and sub-section Memory.

OS Abstractor Minimum Memory Pool Block Configuration

Flag and Purpose Default Setting
OS_MIN_MEM_FROM_POOL

Minimum memory allocated by the
malloc() and/or
OS_Allocate_Memory() calls. This will
be the memory allocated even when
application requests a smaller
memory size

16 (bytes)

NOTE: Increasing this value further
reduces memory fragmentation at the
cost of more wasted memory.

Programmers Guide For MapuSoft Standalone Products

40

OS Abstractor Application Shared Memory Configuration

Flag and Purpose Default Setting
OS_USER_SHARED_REGION1_SIZE

Application defined shared memory
region usable across all process-
based OS Abstractor and OS
Changer processes/applications.
Process-based applications are
required to be built with
OS_INCLUDE_PROCESS feature set
to OS_TRUE

1024 (bytes)

OS Abstractor includes this shared user region in the memory area immediately following all
the OS Abstractor control block allocations. Applications can access the shared memory via
the System_Config->user_shared_region1 global variable. Also, access to shared memory
region must be protected (i.e. use mutex locks prior to read/write by the application).

NOTE: The actual virtual address of the shared memory may be different across
processes/application; however the OS Abstractor initialized the System_Config pointer
correctly during OS_Application_Init function call. Applications should not pass the shared
memory region address pointer from one process to another since the virtual address
pointing to the shared region may differ from process to process (instead use the above
global variable defined above for shared memory region access from each
process/applications).

Programmers Guide For MapuSoft Standalone Products

41

OS Abstractor Clock Tick Configuration

Flag and Purpose Default Setting
OS_TIME_RESOLUTION

This will be the system clock ticks
(not hardware clock tick).

For example, when you call
OS_Task_Sleep(5), you are
suspending task for a period
(5* OS_TIME_RESOLUTION).

See NOTES in this table.

10000 second (= 10milli sec)

Normally this value is derived from the
target OS. If you cannot derive the
value then refer to the target OS
reference manual and set the correct
per clock tick value

OS_DEFAULT_TSLICE

Default time slice scheduling window
width among same priority pre-
emptable threads when they are all
in ready state.

10
Number of system ticks. If system tick
is 10ms, then the threads will be
schedule round-robin at the rate of
every 100ms.
NOTE: On Linux operating system, the
time slice cannot be modified per
thread. OS Abstractor ignores this
setting and only uses the system
default time slice configured for the
Linux kernel.
NOTE: Time slice option is NOT
supported under micro-ITRON.
NOTE: If the time slice value is non-
zero, then under Linux the threads will
use Round-Robin scheduling using the
system default time slice value of Linux.
If the Linux kernel support
LINUX_ADV_REALTIME then the time
slice value will be set accordingly.

NOTE: Since the system clock tick resolution may vary across different OS under different
target. It is recommended that the application use the macro OS_TIME_TICK_PER_SEC to
derive the timing requirement instead of using the raw system tick value in order to keep
the application portable across multiple OS.

Programmers Guide For MapuSoft Standalone Products

42

OS Abstractor Device I/O Configuration

Flag and Purpose Default Setting
NUM_DRIVERS

Maximum number of drivers allowed
in the OS Abstractor driver table
structure

20

NOTE: This excludes the native drivers
the system, since they do not use the
OS Abstractor driver table structure.

NUM_FILES

Maximum number of files that can
be opened simultaneously using the
OS Abstractor file control block
structure.

30

NOTE: One control block is used when
an OS Abstractor driver is opened. This
settings do not impact the OS setting
for max number of files.

EMAXPATH

Maximum length of the directory
path name including the file name
for OS Abstractor use excluding the
null char termination

255

NOTE: This setting does not impact the
OS setting for the max path/file name.

Programmers Guide For MapuSoft Standalone Products

43

OS Abstractor Target OS Specific Notes

Nucleus PLUS Target

The following is the compilations define that has to be set when building the Nucleus PLUS
library in order for the OS Abstractor to perform correctly:

Compilation Flag Meaning
NU_DEBUG Regardless of the target you build, the OS Abstractor

library always requires this flag to be set in order to be
able to access OS internal data structures. Without this
flag, you will see a lot of compiler errors.

Precise/MQX Target

The following are the compilation defines that has to be set if you are using Precise/MQX as
your target OS:

Compilation Flag Meaning
MQX_TASK_DESTRUCTION Set this macro to zero to allow OS Abstractor to

manage destruction of MQX kernel objects
such as semaphores.

BSP_DEFAULT_MAX_MSGP
OOLS

Set this macro to match the maximum number
of message queues and pipes required by your
application at a given time.
For example, if your application would need a
max of 10 message queues and 10 pipes, then
this macro needs to be set to 20.

The MQX_TASK_DESTRUCTION macro is located in source\include\mqx_cnfg.h in your
MQX installation. Set it to zero as shown below (or pass it to compiler via pre-processor
setting in your project make files):

#ifndef MQX_TASK_DESTRUCTION
#define MQX_TASK_DESTRUCTION 0
#endif

The BSP_DEFAULT_MAX_MSGPOOLS macro is located in source\bsp\bspname\bspname.h
in your MQX installation, where bspname is the name of your BSP. Set the required value
as follows:

#define BSP_DEFAULT_MAX_MSGPOOLS (20L)

Programmers Guide For MapuSoft Standalone Products

44

Linux Target

User Vs ROOT Login

OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user
is ROOT, then it will automatically utilize the Linux real time policies and priorities. It is
always recommended that OS Abstractor application be run under ROOT user login. In
this mode:

 OS Abstractor task priorities, time slice, pre-emption modes and critical region
protection features will work properly.

 OS Abstractor applications will have better performance and be more
deterministic behavior since the Linux scheduler is prevented to alter the tasks
priorities behind the scenes.

 Also, when you load other Linux applications (that uses the default
SCHED_OTHER policies), they will not impact the performance of the OS
Abstractor applications that are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux
scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities
and/or policies. It will use the SCHED_OTHER policy and will ignore the application
request to set and/or change scheduler parameters like priority and such. OS
Abstractor applications will run under the non-ROOT mode, with restrictions to the
following OS Abstractor APIs:

 OS_Create_Task: The function parameters priority, timeslice and
OS_NO_PREEMPT flag options are ignored

 OS_Set_Task_Priority: This function will have no effect and will be ignored

 OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT
has no effect and will be ignored

 OS_Protect: Will offer NO critical region data protection and will be ignored. If
you need protection, then utilize OS Abstractor mutex features

 OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher
priority level that the OS Abstractor application tasks.

Though OS Abstractor applications may run under non-ROOT user mode, it is highly
recommended that the real target applications be run under ROOT user mode.

Time Resolution
The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is
retrieved from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100
(this means every tick equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be
different under other real-time or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application
needs if necessary. By default, this value is set for the time slice to be 100ms. If the
Linux Advanced Real Time Feature is present (i.e the Linux kernel macro
LINUX_ADV_REALTIME == 1), then OS Abstractor automatically takes advantage of this
feature if present and uses the sched_rr_set_interval() function and sets the application
required round-robin thread time-slice for the OB Abstractor thread. If this feature is
not present, the the timeslice value for round-robin scheduling will be whatever the
kernel is configured to.

Programmers Guide For MapuSoft Standalone Products

45

Memory Heap

OS Abstractor uses the system heap directly to provide the dynamic variable memory
allocation. The Memory management for the variable memory is best left for the Linux
kernel to be handled, so OS Abstractor only does boundary checks to ensure that the
application does not allocate beyond the pool size. The maximum memory the
application can get from these pools will depend on the memory availability of the
system heap.

Priority Mapping Scheme

The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in a
total of 257 priorities. If the Linux that you use provides less than 257 priority values,
then OS Abstractor maps its priority in a simple window-mapping scheme where a
window of OS Abstractor priorities gets mapped to each individual Linux priority. If the
Linux that you use provides more than 257 priority values, then the OS Abstractor
maps it priority one-on-one somewhere in the middle of the range of Linux priorities.
Please modify the priority scheme as necessary if required by your application. If you
want to minimize the interruption of the external native Linux applications then you
would want the OS Abstractor priorities to map to the higher end of the Linux priority
window.

OS Abstractor priority value of 257 is reserved internally by OS Abstractor to provide
the necessary exclusivity among the OS Abstractor tasks when they request no
preemption or task protection. The exclusivity and protections are not guaranteed if the
external native Linux application runs at a higher priority.

It is recommended that the Linux kernel be configured to have a priority of 512, so that
the OS Abstractor priorities will use the window range in the middle and as such would
not interfere with some of core Linux components. If your Linux kernel is configured to
have less than 257 priorities, the OS Abstractor will automatically configuring a
windowing scheme, where multiple number of OS Abstractor priorities will map to a
single Linux priority. Because of this, the reported priority value could be slightly
different than what was used during the task creating process. If your application uses
the pre-processor called OS_DEBUG_INFO, then all the priority values and calculations
will be printed to the standard output device.

Memory and System Resource Cleanup

OS Abstractor uses shared memory to support multiple OS Abstractor and OS Changer
application processes that are built with OS_INCLUDE_PROCESS mode set to
OS_TRUE.

Programmers Guide For MapuSoft Standalone Products

46

Single-process Application Exit

This will apply to application that does not use the OS_PROCESS feature. Each application
needs to call OS_Application_Free to unregister and free OS Abstractor resources used by
the application. Under circumstances where the application terminates abnormally, the
applications need to install appropriate signal handler and call OS_Application_Free within
them.

Multi-process Application Exit

This will be the case where the applications are built with OS_PROCESS feature set to
OS_TRUE. When the first multi-process application starts, shared memory is created to
accommodate all the shared system resources for all the multi-process application. When
subsequent multi-process application gets loaded, they will register and OS Abstractor will
create all the local resources (memory heap) necessary for the application. Application’s can
also spawn new applications using OS_Create_Process and will result the same as if a new
application get’s loaded. Each application needs to call OS_Application_Free to unregister
and free OS Abstractor resources used by the application. Under circumstances where the
application terminates abnormally, the applications need to install appropriate signal
handler and call OS_Application_Free within them. When the last application calls
OS_Application_Free, then OS Abstractor frees the resources used by the application and
also deletes the shared memory region.

 Manual Clean-up

If application terminates abnormally and for any reason and it was not possible to call
OS_Application_Free, then it is recommended that you execute the provide cleanup.pl
script manually before starting to load applications. Users can query the interprocess
shared resources status by typing ipcs in the command line.

Multi-process Zombie Cleanup

There are circumstances where a multi-process application terminates abnormally and was
not able to call OS_Application_Free. In this case, the shared memory region would be left
with a zombie control block (i.e there is no native process associated with the OS Abstractor
process control block). Whenever, a new multi-process application get’s loaded, OS
Abstractor automatically checks the shared memory region for zombie control blocks. If it
finds any, it will take the following action:
Free and initialize all the control blocks that belong to the zombie process (this could even
be the zombie process of the same application currently being loaded but was previously
terminated abnormally).

Task’s Stack Size

The stack size has to be greater than PTHREAD_STACK_MIN defined
by Linux, otherwise, any OS Abstractor or OS Changer task creation will return success,
but the actual task (pthread) will never get launched by the target OS. It is also safe to use a
value greater than or equal to OS_MIN_STACK_SIZE defined in def.h. OS Abstractor ensures
that OS_STACK_SIZE_MIN is always greater that the minimum stack size requirement set
by the underlying target OS.

Programmers Guide For MapuSoft Standalone Products

47

SMP Flags

The following is the compilation defines that can be set when building the OS Abstractor
library for Linux SMP kernel target OS:

Compilation Flag Meaning
OS_BUILD_FOR_SMP

Support for
Symmetric Multi-
Processors (SMP)

Specify the SMP or non-SMP kernel. The value can be:
OS_TRUE SMP enabled
OS_FALSE SMP disabled

Windows Target

OS_Relinquish_Task API uses Window’s sleep() to relinquish task control. However, the
sleep() function does not relinquish control when stepping through code in the debugger,
but behaves correctly when executed. This is a problem inherent in the OS itself.

QNX Target

User Vs ROOT Login
OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user
is ROOT, then it will automatically utilize the Linux real time policies and priorities. It is
always recommended that OS Abstractor application be run under ROOT user login. In
this mode:

 OS Abstractor task priorities, time slice, pre-emption modes and critical region
protection features will work properly.

 OS Abstractor applications will have better performance and be more
deterministic behavior since the Linux scheduler is prevented to alter the tasks
priorities behind the scenes.

 Also, when you load other Linux applications (that uses the default
SCHED_OTHER policies), they will not impact the performance of the OS
Abstractor applications that are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux
scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities
and/or policies. It will use the SCHED_OTHER policy and will ignore the application
request to set and/or change scheduler parameters like priority and such. OS
Abstractor applications will run under the non-ROOT mode, with restrictions to the
following OS Abstractor APIs:

 OS_Create_Task: The function parameters priority, timeslice and
OS_NO_PREEMPT flag options are ignored

 OS_Set_Task_Priority: This function will have no effect and will be ignored

 OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT
has no effect and will be ignored

 OS_Protect: Will offer NO critical region data protection and will be ignored. If
you need protection, then utilize OS Abstractor mutex features

 OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher
priority level that the OS Abstractor application tasks.

Though OS Abstractor applications may run under non-ROOT user mode, it is highly
recommended that the real target applications be run under ROOT user mode.

Programmers Guide For MapuSoft Standalone Products

48

Time Resolution
The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is
retrieved from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100
(this means every tick equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be
different under other real-time or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application
needs if necessary. By default, this value is set for the time slice to be 100ms.

Memory Heap
OS Abstractor uses the system heap directly to provide the dynamic variable memory
allocation. The Memory management for the variable memory is best left for the Linux
kernel to be handled, so OS Abstractor only does boundary checks to ensure that the
application does not allocate beyond the pool size. The maximum memory the
application can get from these pools will depend on the memory availability of the
system heap.

Priority Mapping Scheme
QNX native priority value of 255 will be reserved for OS Abstractor Exclusivity. The
rest of the 255 QNX priorities will be mapped as follows:
0 to 253 OS Abstractor priorities -> 254 to 1 QNX priorities
254 and 255 OS Abstractor priorities -> 0 QNX priority
The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in
a total of 257.
Memory and System Resource Cleanup
Please refer to the same section under target specific notes for Linux operating
system.
Task’s Stack Size
The stack size has to be greater than PTHREAD_STACK_MIN defined
by Linux, otherwise, any OS Abstractor or OS Changer task creation will return
success, but the actual task (pthread) will never get launched by the target OS. It is
also safe to use a value greater than or equal to OS_STACK_SIZE_MIN defined in
def.h. OS Abstractor ensures that OS_STACK_SIZE_MIN is always greater that the
minimum stack size requirement set by the underlying target OS.

Programmers Guide For MapuSoft Standalone Products

49

VxWorks Target

Version Flags
The following is the compilation defines that has to be set when building the OS
Abstractor library for VxWorks target OS:

Compilation Flag Meaning
OS_VERSION Specify the VxWorks version. The value can be:

OS_VXWORKS_5X – VxWorks 5.x or older
OS_VXWORKS_6X – Versions 6.x or higher

OS_KERNEL_MODE Set this value to OS_TRUE if the OS Abstractor is
required to run as a kernel module.

Under OS_VXWORKS_5X, the OS_KERNEL_MODE flag
is ignored. The library is built to run as a kernel
module.
Under OS_VXWORKS_6X, you have the option to create
the library for either as a kernel module or a user
application as below:
OS_KERNEL_MODE = OS_TRUE for kernel module
OS_KERNEL_MODE = OS_FALSE for user application.

Unsupported OS Abstractor APIs
The following OS Abstractor APIs are not supported as shown below:

Compilation Flag Unsupported APIs
OS_VERSION =
OS_VXWORKS_5X

OS_Delete_Partion_Pool
OS_Delete_Memory_Pool
OS_Get_Semaphore_Count

OS_VERSION =
OS_VXWORKS_6X and
OS_KERNEL_MODE = OS_TRUE

OS_Set_Clock_Ticks

OS_VERSION =
OS_VXWORKS_6X and
OS_KERNEL_MODE =
OS_FALSE

OS_Get_Semaphore_Count

Programmers Guide For MapuSoft Standalone Products

50

 Application Initialization

Once you have configured the OS Abstractor (refer to chapter OS Abstractor Configuration),
now you are ready to create a sample demo application.

Application needs to initialize the OS Abstractor library by calling the OS_Application_Init()
function prior to using any of the OS Abstractor function calls. Please refer to subsequent
pages for more info on the usage and definition of OS_Application_Init function.

The next step would be is to create the first task and then within the new task context,
application needs to call other initializations functions if required. For example, to use the
POSIX OS Abstractor component, application need to call OS_Posix_Init() function within an
OS Abstractor task context prior to using the POSIX APIs. The OS_Posix_Init() function
initializes the POSIX library and makes a function call to px_main() function pointer that is
passed along within OS_Posix_Init() call. Please note that the px_main() function is similar to
the main() function that is typically found in posix code. Please refer to the example
initialization code shown at the end of this section.

If the application also uses OS Changer components, then the appropriate OS Changer library
initialization calls need to be made in addition to POSIX initialization. Please refer to the
appropriate OS Changer reference manual for more details.

Please refer to the init.c module provided with the sample demo application for the specific
OS, tools and target for OS Abstractor initialization and on starting the application.

If you need to re-configure your board differently or would like to use a custom board, or
would like to re-configure the OS directly, then refer to the appropriate documentations
provided by the OS vendor.

Example: BASE OS Abstractor for Windows Initialization
int main(int argc,
 LPSTR argv[])
{
 OS_Main();

 return (OS_SUCCESS);
} /* main */

VOID OS_Main()
{
 OS_TASK task;
 OS_APP_INIT_INFO info;

 /* set the OS_APP_INIT_INFO structure with the actual number of resources
we will use. If we set all the Variables to -1, the default values would be
used. On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO structure with
at least first_available set to the first unused memory. Other OS's can pass
NULL to OS_Application_Init and all defaults would be used. */

Programmers Guide For MapuSoft Standalone Products

51

#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))
 info.first_available = first_unused_memory; /* required for
ThreadX */
#endif
 info.debug_info = OS_DEBUG_VERBOSE;
 info.task_pool_enabled = OS_TRUE;
 info.task_pool_timeslice = -1;
 info.task_pool_timeout = -1;
 info.root_process_preempt = -1;
 info.root_process_priority = -1;
 info.root_process_stack_size = -1;
 info.root_process_heap_size = -1;
 info.default_timeslice = -1;

 info.max_tasks = 6;
 info.max_timers = 3;
 info.max_mutexes = 0;
 info.max_pipes = 1;
#if (INCLUDE_OS_PROCESS == OS_TRUE)
 info.max_processes = 2;
#else
 info.max_processes = 0;
#endif
 info.max_queues = 1;
 info.user_shared_region1_size = 0;
 info.max_partition_mem_pools = 0;
 info.max_dynamic_mem_pools = 1;
 info.max_event_groups = 2;
 info.max_semaphores = 1;

 OS_Application_Init("DEMO", HEAP_SIZE, &info);

 OS_Create_Task(&task,
 "APPSTART",
 OS_Application_Start,
 0,
 STACK_SIZE,
 1,
 0,
 OS_NO_PREEMPT | OS_START);

 OS_Application_Wait_For_End();
} /* OS_Main */

VOID OS_Application_Start(UNSIGNED argv)
{
/*User application code*/
}

Programmers Guide For MapuSoft Standalone Products

52

Example: POSIX OS Abstractor for Windows Target Initialization
int main(int argc,
 LPSTR argv[])
{
 OS_Main();

 return (OS_SUCCESS);
} /* main */

VOID OS_Main()
{
 OS_TASK task;
 OS_APP_INIT_INFO info;

 /* set the OS_APP_INIT_INFO structure with the actual
 * number of resources we will use. If we set all the
 * variables to -1, the default values would be used.
 * On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO
 * structure with at least first_available set to the first
 * unused memory. Other OS's can pass NULL to OS_Application_Init
 * and all defaults would be used */
#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))
 info.first_available = first_unused_memory; /* required for
ThreadX */
#endif
 info.debug_info = OS_DEBUG_VERBOSE;
 info.task_pool_enabled = OS_TRUE;
 info.task_pool_timeslice = -1;
 info.task_pool_timeout = -1;
 info.root_process_preempt = -1;
 info.root_process_priority = -1;
 info.root_process_stack_size = -1;
 info.root_process_heap_size = -1;
 info.default_timeslice = -1;

 info.max_tasks = 6;
 info.max_timers = 3;
 info.max_mutexes = 0;
 info.max_pipes = 1;
#if (INCLUDE_OS_PROCESS == OS_TRUE)
 info.max_processes = 2;
#else
 info.max_processes = 0;
#endif
 info.max_queues = 1;
 info.user_shared_region1_size = 0;
 info.max_partition_mem_pools = 0;
 info.max_dynamic_mem_pools = 1;
 info.max_event_groups = 2;
 info.max_semaphores = 1;

 OS_Application_Init("DEMO", HEAP_SIZE, &info);

 OS_Create_Task(&task,
 "APPSTART",

Programmers Guide For MapuSoft Standalone Products

53

 OS_Application_Start,
 0,
 STACK_SIZE,
 1,
 0,
 OS_NO_PREEMPT | OS_START);

 OS_Application_Wait_For_End();
} /* OS_Main */

VOID OS_Application_Start(UNSIGNED argv)
{
 pthread_t task;

/* posix compatibility initialization. create the main process
 * and pass in the osc posix main entry function px_main.*/
 OS_Posix_Init();

 pthread_create(&task, NULL, (void*)px_main, NULL);
 pthread_join(task, NULL);

 OS_Application_Free(OS_APP_FREE_EXIT);
} /* OS_Application_Start */

int px_main(int argc,
 char* argv[])
{

/*User application code*/
}

‘

Programmers Guide For MapuSoft Standalone Products

54

Runtime Memory Allocations

OS Abstractor

Some of the allocations for this product will be dependant on the native os. Some of these may
be generic among all products. The thread stacks should come from the process heap. This is
only being done on the OS Abstractor for QNX product at the moment.

 Message in int_os_send_to_pipe.

 Device name in os_creat

 Partitions in os_create_partition_pool

 Device name in os_device_add

 File structures in os_init_io

 Driver structures in os_init_io

 Device header for null device in os_init_io

 Device name for the null device in os_init_io

 Device name in os_open

 Environment structure in os_put_environment

 Environment variable in os_put_environment

 Memory for profiler messages if profiler feature is turned ON

 Thread stack (only under QNX)

POSIX OS Abstractor

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,
all these allocations come from the calling processes memory pool:

 Pthread key lists and values

 Stack item in pthread_cleanup_push

 Sem_t structures created by sem_open.

 Timer_t structures created by timer_create.

 mqueue_t structures created by mq_open.

 Message in mq_receive. This is deallocated before leaving the function call.

 Message in mq_send. This is deallocated before leaving the function call.

 Message in mq_timedreceive. This is deallocated before leaving the function call.

 Message in mq_timedsend. This is deallocated before leaving the function call.

Programmers Guide For MapuSoft Standalone Products

55

All of the following are specific to the TKernel OS and use the SMalloc api call. These will not
be accounted for in the process memory pool:

 Parameter list for execve

 INT_PX_FIFO_DATA structure in fopen

All of the following are specific to the TKernel OS and use os_malloc_external API call. These
will not be accounted for in the process memory pool.

 Buffer for getline

 Globlink structure in int_os_glob_in_dir

 Globlink name in int_os_glob_in_dir

 Directory in int_o_prepend_dir

micro-ITRON OS Abstractor

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,
all these allocations come from the calling processes memory pool.

 Message in snd_dtq. This is deallocated before leaving the function call.

 Message in psnd_dtq. This is deallocated before leaving the function call.

 Message in tsnd_dtq. This is deallocated before leaving the function call.

 Message in fsnd_dtq. This is deallocated before leaving the function call.

 Message in rcv_dtq. This is deallocated before leaving the function call.

 Message in prcv_dtq. This is deallocated before leaving the function call.

 Message in trcv_dtq. This is deallocated before leaving the function call.

 Message in snd_mbf. This is deallocated before leaving the function call.

 Message in psnd_mbf. This is deallocated before leaving the function call.

 Message in tsnd_mbf. This is deallocated before leaving the function call.

 Message in rcv_mbf. This is deallocated before leaving the function call.

 Message in prcv_mbf. This is deallocated before leaving the function call.

 Message in trcv_mbf. This is deallocated before leaving the function call.

Programmers Guide For MapuSoft Standalone Products

56

OS Changer VxWorks

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,
all these allocations come from the calling processes memory pool.

 Wdcreate allocates memory for an OS_TIMER control block .

 Message in msgqsend. This is deallocated before leaving the function call.

 Message in msgqreceive. This is deallocated before leaving the function call

OS Changer pSOS

All of the following allocations use OS_Allocate_Memory using the System_Memory pool.
Thus, all these allocations come from the calling processes memory pool.

 Rn_getseg will allocate from the System_Memory if a pool is not specified.

 Message in q_vsend. This is deallocated before leaving the function call.

 Message in q_vrecieve. This is deallocated before leaving the function call.

 Message in q_vurgent. This is deallocated before leaving the function call.

All of the following allocations use malloc. Depending on the setting of OS_MAP_ANSI_MEM
these may or may not be accounted for in the process memory pool.

 IOPARMS structure in de_close

 IOPARMS structure in de_cntrl

 IOPARMS structure in de_init

 IOPARMS structure in de_open

 IOPARMS structure in de_read

OS Changer Nucleus

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,
all these allocations come from the calling processes memory pool.

 Message in nu_receive_from_pipe. This is deallocated before leaving the function
call

 Message in nu_receive_from_queue. This is deallocated before leaving the
function call

 Message in nu_send_to_front_of_pipe. This is deallocated before leaving the
function call

 Message in nu_send_to_front_of_queue. This is deallocated before leaving the
function call

 Message in nu_send_to_pipe. This is deallocated before leaving the function call

 Message in nu_send_to_queue. This is deallocated before leaving the function
call

Programmers Guide For MapuSoft Standalone Products

57

OS Abstractor Process Feature

An OS Abstractor process or an application (“process”) is an individual module that contains
one or more tasks and other resources. A process can be looked as a container that provides
encapsulation from other process. The OS Abstractor processes only have a peer-to-peer
relationship (and not a parent/child relationship).

An OS Abstractor process comes into existence in two different ways. Application registers a
new OS Abstractor process when it calls OS_Application_Init function. Application also
launches a new process when it calls the OS_Create_Process function. In the later case, the
newly launched process does not automatically inherit the open handles and such; however
they can access the resources belonging to the other process if they are created with “system”
scope.

Under process-based operating system like Linux, this will be an actual process with virtual
memory addressing. As such the level of protection across individual application will be
dependent on the underlying target OS itself.

Under non-process-based operating system like Nucleus PLUS, a process will be a specialized
task (similar to a main() thread) owning other tasks and resources in a single memory model
based addressing. The resources are protected via OS Abstractor software. This protection
offered by OS Abstractor is software protection only and not to be confused with MMU
hardware protection in this case.

OS Abstractor automatically tracks all the resources (tasks, threads, semaphores, etc.) and
associates them with the process that created them. All the memory requirements come from
its own process dedicated memory pool called “process system pool”. Upon deletion of the
process, all these resources will automatically become freed.

Depending on whether the resource needs to be shared across other processes, they can be
created with a scope of either OS_SCOPE_SYSTEM or OS_SCOPE_PROCESS. The resources
with system scope can be accessible or usable by the other processes. However, the process
that creates them can only do deletion of these resources with system scope.

A new process will be created as a “new entity” and not a copy of the original. As such, none
of the resources that are open becomes immediately available to the newly created process.
The new created process can use the resources which were created with system scope by first
retrieving their ID through their name. For this purpose, the application should create the
resources with unique names. OS Abstractor will all resource creation with duplicate names,
however the function that returns the resource ID from name will provide the ID of only the
first entry.

Direct access to any OS Abstractor resource control blocks are prohibited by the application.
In other words, the resource Ids does not directly point to the addresses of the control blocks.

Programmers Guide For MapuSoft Standalone Products

58

Simple (single-process) Versus Complex (multiple-process) Applications

An OS Abstractor application can be simple (i.e. single-process application) or complex (multi-
process application). Complex and large applications will greatly benefit in using the
OS_INCLUDE_PROCESS feature support offered by OS Abstractor.

OS_INCLUDE_PROCESS =
OS_FALSE
(Simple OR Single-process
Application)

OS_INCLUDE_PROCESS = OS_TRUE
(Complex OR multi-process
Application)

OS Abstractor applications are
independent from each other and
are complied and linked into a
separate executables. There is no
need for the OS Abstractor and/or
OS Changer APIs to work across
processes.

OS Abstractor applications can share the
OS Abstractor resources (as long as they
are created with system scope) between
them even though they may be complied
and linked separately. The OS Abstractor
and/or OS Changer APIs works across
processes.

Many independent or even clones
of OS Abstractor single-process
applications can be hosted on the
OS platform.

In addition to independent single-
process applications, the current release
of OS Abstractor allows to host one
multi-process application.

OS Abstractor applications do
NOT spawn new processes via the
OS_Create_Process function. In
fact, any APIs with the name
“process” in them are not
available for a single-process
application.

OS Abstractor applications can spawn
new processes via the
OS_Create_Process function.

Each application uses its own
user configuration parameters set
in the osabstractor usr.h file.

Each application has to have the same
set of shared resources defined in the
osabstractor_usr.h (e.g. max number of
tasks/threads across all multi-process
applications). When the first multi-
process application gets loaded, the OS
Abstractor uses the values defined in
osabstractor_usr.h or the over-ride
values passed along its call to
OS_Application_Init function to create all
the shared system resources. When
subsequent multi-process application
gets loaded, OS Abstractor ignores the
values defined in the osabstractor_usr.h
or the values passed in the
OS_Application_Init call. Please note that
the shared resources are only gets
created during the load time of the first
application and they gets deleted when
the last multi-process application exits.

OS Abstractor creates all the
resource control blocks within the
process memory individually for
each application.

OS Abstractor creates all the resource
control blocks in shared memory during
the first OS_Application_Init function
call. In other words, when the first
application gets loaded, it will initialize
the OS Abstractor library. After this,

Programmers Guide For MapuSoft Standalone Products

59

every subsequent OS_Application_Init
call will register and adds the application
as a new OS Abstractor process and also
creates the memory pool for the
requested heap memory.

An application can delete or free or re-
start itself with a call to
OS_Application_Free. An application can
delete or re-start another application via
OS_Delete_Process.

Also, it is up to the application to provide
the necessary synchronization during
loading individual applications so that
the complex application will start to run
only in the preferred sequence.

Memory Usage

The memory usage depends on whether your application is built in single process mode (i.e
OS_INCLUDE_PROCESS set to false) or multi-processes mode (i.e OS_INCLUDE_PROCESS set
to true).

The memory usage also depends on whether the target OS supports single memory model or a
virtual memory model. Operating systems such as LynxOS, Linux, Windows XP, etc. are
based on virtual memory model where each application are protected from each other and run
under their own virtual memory address space. Operating systems like Nucleus PLUS,
ThreadX, MQX, etc. are based on single memory model where each application shares the
same address space and there is no protection from each other.

In general, OS Abstractor applications require memory to store the system configuration and
also to meet the application heap memory needs.

Programmers Guide For MapuSoft Standalone Products

60

Memory Usage under Virtual memory model based OS

Multi-process Application

System_Config: The system config structure will be allocated from shared memory. The size
will be returned to the user for informational use via the OS_SYSTEM_OVERHEAD macro.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the
heap size for this particular process. In this type of system, it is possible to have multiple
applications, all of which will call this API. This API will create an OS Abstractor dynamic
memory pool the size of the heap. The global variable System_Memory will be set to the id of
this pool.

OS_Create_Process: The memory value passed into this API by process_pool_size will be the
heap size for this particular process. This API will create an OS Abstractor dynamic memory
pool the size of the heap. The global variable System_Memory will be set to the id of this
pool.

System_Memory: This will be set to the pool id of the process memory pool.

Single-process Application

System_Config: The system config structure will be allocated from the process heap. The
size will be returned to the user for informational use only by calling
OS_System_Overhead();

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the
amount of memory available to the system. This API will create an OS Abstractor dynamic

Programmers Guide For MapuSoft Standalone Products

61

memory pool this size. The memory for System_Config does not come from this pool. So the
total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will be set to 0. Since there are no processes, the first pool will always
be the system memory pool.

Native process heap size: We are not adjusting the native process heap size, so it could be
possible that there is an inconsistency between the amount of memory reserved by OS
Abstractor and the amount of memory reserved for the actual heap of the native process.
There is no upper bounds limit to the system wide memory use while in process mode. We
will create processes without regard to the actual size of the physical memory.

Memory Usage under Single memory model based OS

Multi-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and
will be adjusted the size of the system_config structure.

OS_Application_Init: The memory value passed into this API by memory_pool_size will be the
heap size for this particular process. This API can only be called once since it is not possible
to have multiple applications natively. This API will create an OS Abstractor dynamic
memory pool the size of the heap.

OS_Create_Process: The memory value passed into this API by process_pool_size will be the
heap size for this particular process. This API will create an OS Abstractor dynamic memory
pool the size of the heap.

System_Memory: This will always be set to 0. When we get a pool id of 0 in any of the
allocation APIs we will know to allocate from the current process memory pool. This means
that the dynamic memory pool control block at index 0 is not to be used.

Programmers Guide For MapuSoft Standalone Products

62

Programmers Guide For MapuSoft Standalone Products

63

Single-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and
will be adjusted the size of the system_config structure.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the
amount of memory available to the system. This API will create an OS Abstractor dynamic
memory pool this size. The memory for System_Config does not come from this pool. So the
total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will always be set to 0. Since we are not in process mode, there
should not be any other OS Abstractor memory pools created.

There is no upper bounds limit to the system wide memory use while in process mode.
Also, it cannot be guaranteed that there will be enough memory to create all the processes
of the application since there is no total memory being reserved.

Programmers Guide For MapuSoft Standalone Products

64

POSIX OS Abstractor Configuration

When the INCLUDE_OS_POSIX option is set to OS_TRUE, the OS Abstractor also includes
POSIX APIs in addition to the BASE OS Abstractor APIs available to the application.

Inclusion of osabstractor.h will ensure that all the POSIX API calls in the application are
automatically re-mapped to OS Abstractor libraries. Applications can also selectively
exclude individual modules of POSIX OS Abstractor APIs, if required.

Current release does not support including or excluding Individual modules within POSIX
OS Abstractor.

Porting POSIX Legacy Code with OS Abstractor

The first step in porting any POSIX legacy code base using POSIX OS Abstractor component
would be to rename the application main() function to px_main(). Then this function can be
started via the OS_Posix_Init() call. Please refer to the list of POSIX APIs that are supported
by the POSIX OS Abstractor component. If the application requires a specific POSIX
function which is not support by OS Abstractor, then there are two options:

1. Re-write the application with BASE OS Abstractor function calls for all the unsupported
POSIX APIs needed by your application.

2. Check if the target OS offers support to this function and if so, you can directly use
those functions (however, in this case, the OS Abstraction will not be there). In this
case, make sure you include all the relevant POSIX header files provided by the target
OS before including osabstractor.h. This way, the POSIX calls used by the application
will get mapped to the POSIX equivalent calls from the OS Abstractor library.

If applications need to use the POSIX APIs offered by the target OS (or) tools in addition to
what is offered with POSIX OS Abstractor, then you need to do it by including additional
POSIX header files provided by the target OS. However, these headers files are required to
be included prior to osabstractor.h within the application source code.

Programmers Guide For MapuSoft Standalone Products

65

 POSIX OS Abstractor – API Deviations

POSIX API available on some selected OS and also support for new APIs are constantly
added in newer releases.

 Contact MapuSoft to find out the latest POSIX API support for your target OS
platform.

 Refer to the POSIX standards reference documents for the specifications for all the
above POSIX APIs.

NOTE: Extensive POSIX level and other standard’s compliance is provided on VxWorks 6.x
OS platform. Additional POSIX support is available on T-Kernel platform

Programmers Guide For MapuSoft Standalone Products

66

Chapter 6. OS Changer Porting
Examples

This chapter contains the following topics:

Sample Porting of pSOS Application to Linux with OS Changer

Sample Porting of VxWorks Application with OS Changer using OSPAL

Programmers Guide For MapuSoft Standalone Products

67

Sample Porting of pSOS Application to Linux with OS Changer

In most applications, using OS Changer is straightforward. The effort required in porting
is mostly at the underlying driver layer. Since we do not have specific information about
your application, it will be hard to tell how much work is required. However, we want you
to be fully aware of the surrounding issues upfront so that necessary steps could be taken
for a successful and timely porting.

This section provides porting guidelines in two different flow charts. Contact MapuSoft
Technologies for further information on your application specific issues.

Programmers Guide For MapuSoft Standalone Products

68

Chart A covers issues relating with OS Changer, device drivers, interrupt service routines,
etc.

Porting pSOSTM Applications to LINUX - Guidelines
Chart A - Kernel APIs, interrupts and device drivers

Yes

START

No

Yes

CHECK 1
Does your application uses any pSOS kernel

APIs' that are not supported by
OSCHANGER?

Go To Chart B

Implement the
unsupported APIs

using LINUX

No

Yes

CHECK 2
Does your application uses any pSOS APIs'

provided by OSCHANGER that are little
different from the original APIs?

Modify your
application to

handle the
differences

No

Yes

CHECK 4
Does your application configure the target

hardware differently than what was validated
by the new RTOS you have chosen?

Modify the port specific
code or BSP to make it
work for your board. It is

highly recommended
toget a native demo

application running on
your target prior to

porting

No

Yes
CHECK 5

Are you using pSOS based device drivers?

Use device wrapper functions
to interact with the driver to

minimize changes to
application. Port the pSOS

device driver to Linux

CHECK 3
Does your application require call-out routines

functions provided by pSOS kernel?

Modify OSCHANGER
and/or implement them
using Linux alternatives

No

No

Yes
CHECK 6

Are you using interrupt service routines that
are unaware to or unmanaged by pSOS?

Port them to work under
Linux

Programmers Guide For MapuSoft Standalone Products

69

Chart B covers issues relating to other add-on components (like pHILE) that application
may use.

START

No

Yes
CHECK 1

Does your application uses pNA+ networking
component provided by pSOS?

HAPPY PORTING

Port API interfaces
and drivers to
Linux via using
BSD socket

interface APIs. If
you prefer to use a
third party stack for
any reason, then
make sure it will
work under Linux

No

Yes
CHECK 2

Does your application uses pHILE file
management APIs provided by pSOS?

Port API interfaces
and drivers to

Linux

No

Yes
CHECK 3

Does your application uses OpTIC graphics
APIs provided by pSOS?

Port API interfaces
and drivers to

native or third party
graphics product

No

Yes

CHECK 4
Does your application uses pREPC+ library

APIs provided by pSOS?

Utilize the CLIB provided by Linux. Check
to make sure the CLIB APIs you use are

re-entrant for your multi-tasking
environment

Porting pSOSTM Applications to Linux - Guidelines
Chart B - Other Components

Programmers Guide For MapuSoft Standalone Products

70

OS Changer Overview

The OS Changer contains the following modules, which can be found at the installation
directory:

Module Description
OSCHANGER.H This header files include RTOS specific components

and also components that is required for the
application

PS_OSCHANGER\PS_OSCHANGER.H This header file provides the translation layer between
the pSOS™ defines, APIs and parameters to OS
Changer’s virtual abstraction definition, which then
re-maps to Linux equivalents

PS_OSCHANGER\PS_I.C Provides the pSOS OS Changer initialize function
PS_OSCHANGER\PS_AS.C Provides pSOS™ signal handling APIs
PS_OSCHANGER\PS_EV.C Provides pSOS™ event handling APIs
PS_OSCHANGER\PS_T.C Provides pSOS™ task handling APIs
PS_OSCHANGER\PS_PT.C Provides pSOS™ partition memory management APIs
PS_OSCHANGER\PS_RN.C Provides pSOS™ memory region management APIs
PS_OSCHANGER\PS_Q.C Provides pSOS™ fixed and variable queue APIs
PS_OSCHANGER\PS_SM.C Provides pSOS™ semaphore handling APIs
PS_OSCHANGER\PS_TM.C Provides pSOS™ timer, time and date APIs
PS_OSCHANGER\PS_DE.C Provides pSOS™ of device and driver APIs
OSC_LX\OSC_LL.C Provides link list manipulation
OSC_LX\OSC_LX.H OSC to Linux compile time mapping module
OSC_LX\OSC_LX.C OSC to Linux function mapping module
OSC_LX\OSC_LX_INIT.C OS initialization to start application - function main()

User configurable module.
OSC_NU\OSC_LX_USR.C Configure fatal error handler rountines to your needs
DEMO\PS_OSCHANGER\PS_LX_INIT
.C

User configurable Linux initialization module
User condigurable module.

DEMO\PS_OSCHANGER\PS_DEMO.
C

Sample pSOS demo application that runs on Linux

DEMO\PS_OSCHANGER\PS_DVSERI
AL.C

Sample pSOS device driver code

DEMO\PS_OSCHANGER\PS_USR.C User configurable module to setup pSOS drivers’ init
configurations.

NOTE: Install OS Changer in the root file system (Rfs) under the folder called ‘opt’, in a
directory called ‘mapusoft’. Please be aware that the Rfs path location would be different
depending on if you are working or doing a cross-compiling.

Programmers Guide For MapuSoft Standalone Products

71

About pSOS OS Changer

OS Changer makes it easy to transition applications developed using pSOS™ kernel APIs
to the Linux operating system. This product comes in the form of a library providing
support for pSOS™ kernel APIs integrated and optimized for Linux operating system.
Porting is done in the following three steps:

 Remove references to the pSOS™ header files and the pSOS™ configuration
tables within your application.

 Set pre-processor defines to indicate OS selection and also the OS Changer APIs
that you require to use

 Include the Linux and OS Changer libraries and insert oschanger.h in your
application.

 Compile, link and download your application to the target. Resolve compiler or
linker or run-time errors as appropriate

NOTE: The pSOS™ APIs have gone through very little change over the past years and as a
result this product should work with all pSOS™ versions. We also support older versions
of pSOS APIs, so please contact MapuSoft for further help.

OS Changer and Linux OS Integration

The library mostly uses POSIX API functions and may accesses Linux OS’s internal data
structures to provide you further optimization under selected Linux Distribution. OS
Changer may also be integrated with selected Linux vendors tools and IDE to provide you
a out-of-the box solution. Some of the pSOS kernel APIs may be using more than one or
more Linux equivalent APIs in order to provide the required pSOS API support. The OS
Changer should work with all the versions of Linux that support POSIX 1003.1a, 1003.1b,
and 1003.1c API compliance in the field because there were no specific changes are
required or made to the underlying Linux product

How to Use pSOS OS Changer

OS Changer is designed for use as a C library. Services used inside your application
software are extracted from the OS Changer and Linux libraries, and, are then combined
with the other application objects to produce the complete image. This image may be
downloaded to the target system or placed in ROM on the target system. Please refer to
appropriate documentation for help with compiling, debugging and downloading your
application to target.
The steps for using OS Changer are described in the following generic form:

 Remove the pSOS™ header file include defines from all your source files.

 Remove definitions and references to all the pSOS™ configuration data
structures in your application.

 Include the OS Changer header file oschanger.h in all of the source files.

 In your project make file, define the RTOS for Linux, if you are using advanced
real-time options of Linux, the appropriate compiler tool environment if required
and other pre-processor options to build the OS Changer libraries and your
application.

 Under Linux, the OSC_Application_Start function will be your main() routine. This
function calls ps_Initialize which creates the pSOS root task. If some things need
to be done for your application prior to root task creation, then place those
codes between OSC_RTOS_Init and ps_Initialize functions.

Programmers Guide For MapuSoft Standalone Products

72

 Modify the Linux BSPs to match with your development board configurations
(see appropriate Linux documentation).

 Customize the priority mapping if necessary within OSC_RTOS_Init function. OS
Changer does an automatic mapping of the required 257 priorities to Linux
somewhere in the middle of Native Linux’s lowest and highest priorities.

 Resolve the compiler and linker errors.

 Download the complete application image to the target system and resolve all
the OS Changer generated run-time errors.

Please review the processor and development system documentation for additional
information, including specific details on how to use the compiler, assembler, and linker.
Please refer to the underlying Linux documentation to make the necessary changes to the
BSP.

It is recommended that you first bring up the standard OS demo application provided by
the Linux product for your target first, prior to trying out porting applications via OS
Changer.

OS Changer is designed to be independent of the underlying hardware and operating
system itself. It does not contain any assembly code. If you need any specific features of
pSOS functions that is required but not provided by the standar OS Changer release,
please contact MapuSoft Technologies. In most cases, we will be able to provide an easy
work-around or may have an updated release covering those required functionalities.

Programmers Guide For MapuSoft Standalone Products

73

OS Changer Library Initialization

After, Linux initializes itself, your applications main() entry point is mapped directly to OS
Changer’s OSC_Application_Start function where you will initialize your application if
required. This function also provides a memory pointer for application’s run time memory
needs. But under Linux OS, since all OS Changer’s and applications memory requirement
are directly derived from the system heap, so you can safely ignore this parameter. There
are four steps needed to be performed within the OSC_Application_Start() function located in
PS_LX_INIT.C file module prior to using any of the OS Changer libraries:

1. Intialize OS Changer RTOS specific library by calling the OSC_RTOS_Init()

2. Insert any application specific code if necessary, before the root task get’s
spawned

3. Initialize the OS Changer pSOS library by calling ps_Initialize().

4. Just Idle or sleep so that your linux program will not exit.

#include “oschanger.h” /* remove psos header file includes and use
oschanger.h */

void Function_Root(UNSIGNED); /* root task – prototype definition */

ulong tRoot; /* Define the Root Task ID, this is initialized in ps_initialize
func */

void OSC_Application_Start(VOID *first_available_memory)
{

OSC_RTOS_Init();

/* insert your code here !!!! */

 /* OS Changer psos library initialzation and root task creation */

ps_Initialize(STACK_SIZE, &tRoot, Function_Root);

for(;;)
 OSC_Sleep_Task(10000); /* just Idle here, after starting root,

 Otherwise your program will EXIT !!! */
}

When there is a fatal system error and the pre-processor flag OSC_DEBUG is set, the
execution will stop inside the OSC_Fatal_Error function define in osc_lx\osc_lx_usr.c file.
To handle the error differently, insert your code within OSC_Fatal_Error.

Programmers Guide For MapuSoft Standalone Products

74

Device Drivers Initialization

The device drivers and the interrupt service routines needed to be ported to work under
Linux. OS Changer provides the necessary application level API interface via the functions
like de_init, de_open, and others. For each device that you access via the de_xxx interface,
you will need to provide corresponding wrapper device driver routines for that device. The
functions SetUpDrivers (see ps_usr.c module) will setup and install your driver. Setup
installs the driver by calling InstallDriver along with providing required wrapper function
pointers of the device specific routines. Within the wrapper rountines, use the device I/O
routines to connect to the device and upon return, you can provide the driver response in
the form how the application expects. This will greatly minimize changes to the application
interacting with the Linux devices. When adding a driver, there are three steps:
Modify ps_oschanger.h to add the unique device ID with device major & minor values set
accordingly.
NOTE: The device major ID cannot exceed the define SC_DEVMAX value.
If you need more drivers, then modify the SC_DEVMAX value accordingly. Code sample
given below (refer to ps_oschanger.h also) adds device DEV_SERIAL_DEMO_DRV with the
major number defined as SC_DEV_SERIAL_DEMO_DRV (equals to value 14, which is less
than SC_DEVMAX) to the I/O system.

/* Device major ID value defined below */
#define SC_DEV_SERIAL_DEMO_DRV 14 /* major number */

/* Device unique ID (major ID value = 14; minor ID value = 0).
Note that the major value is the most significant 16bits and minor value is the
least significant 16bits */
#define DEV_SERIAL_DEMO_DRV (SC_DEV_SERIAL_DEMO_DRV << 16)

Modify the SetUpDriver to install and setup the device driver. See code sample
below:

/* Install the DEMO SERIAL DRIVER */
/* Make sure you’re the major value of the device ID does not exceed the dev
max value */
 #if(SC_DEV_SERIAL_DEMO_DRV > SC_DEVMAX)
 #error "SC_DEV_SERIAL_DEMO_DRV cannot be > SC_DEVMAX"
 #endif

/* sample installation and setup for the serial driver */
InstallDriver(SC_DEV_SERIAL_DEMO_DRV, DevSerialInit, DevSerialOpen,
 DevSerialClose, DevSerialRead, DevSerialWrite,
 DevSerialCntrl, 0, 0);

Develop your device specific routines. See dvserial.c module in the demo directory for
sample device specific routines. Every device specific routine should return two values
(errcode and retval) to the de_xxxx api interface as shown below prior to their function
return:
/* set driver return value */

iopb->out_retval = 0;
iopb->err = EOK;

NOTE: Please note that the return values are returned differently unlike how it pSOS does
it. In pSOS, the return values are normally set in specific registers instead of how it is
done above for OS Changer. However, this is much more convenient way since we are not
reading writing to registers via assembly code.

Programmers Guide For MapuSoft Standalone Products

75

Linux Time and Clock Initialization

In this release, tm_set and tm_get calendar time API calls are currently not supported.
The number of clock ticks is defined by OSC_TIME_TICK_PER_SEC, which is retrieved
from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means
every tick equals to 10ms). However, the OSC_TIME_TICK_PER_SEC could be different
under other real-time or proprietary Linux.

Setting the task Time-Slice value while creating pSOS tasks with the time slice option set,
will use the value called OSC_DEFAULT_TSLICE, which is defined in osc_lx.h. By default,
this value is set for the time slice to be 100ms. Make sure you modify this value to match
with your application needs if necessary.

Memory Usage

OS Changer libraries used the system heap directly to provide the dynamic and partition
pool memory. The Memory management and garbage collection is best left for the Linux
kernel to be handled, so OS Changer does not restrict application with memory request
from partition and/or dynamic memory pools. The maximum memory the application can
use will depend on the memory availability of the system heap.

Priority Mapping from pSOS to Linux

OS Changer first maps the pSOS priorities “0 to 255” to “255 to 0” OS Changer’s internal
abstraction priority values. The abstraction priorities 256 plus one more for exclusivity are
mapped to Linux utilizing a simple scheme (please refer to OSC_RTOS_INIT function defined
in osc_lx.c). OS Changer queries to kernel to find out the min and max priorities to first
calculate the linux priority window. Then it maps the abstraction priorities one on one to
Linux priorities by picking up a range exactly in the middle of the linux priority window.
Please modify the priority scheme as necessary for your application. If you want to
minimize the interruption of the external native linux applications then you would want
the OS Changer abstraction priorities to map to the higher end of the linux priority
window.

OS Changer abstraction priority value of 257 is reserved internally by OS Changer to
provide the necessary exclusivity among the OS Changer tasks when they request no
preemption or task protection. The exclusivity and protections are not guaranteed if the
external native Linux application runs at a higher priority.

Programmers Guide For MapuSoft Standalone Products

76

It is recommended that the Linux kernel be configured to have a priority of 512, so that
the OS Changer priorities will use the window range in the middle and as such would not
interfere with some of core Linux components. If your Linux kernel is configured to have
less than 257 priorities, the OS Changer will automatically configuring a windowing
scheme, where multiple number of OSC Changer priorities will map to a single Linux
priority. Because of this, the reported priority value could be slightly different than what
was used during the task creating process. If your application uses the pre-processor
called OSC_DEBUG, then all the priority values and calculations will be printed when you
call the OSC_RTOS_Init function.

Conditional Compilations

Select the RTOS by setting the following compiler definition as follows:

Compilation Flag Meaning
RTOS The value of this flag indicates the RTOS selection

defined in osc_changer.h:

OSC_NUCLEUS – Nucleus PLUS from ATI
OSC_THREADX – ThreadX® from Express Logic
OSC_VXWORKS – VxWorks® from Wind River
Systems
OSC_MQX – Precise/MQX® from ARC® International
OSC_ITRON – ITRON based operating system
OSC_LINUX - Linux® OS
If you are doing your own porting either to another
commercial or proprietary RTOS, you could add your
own define and include appropriate interface files. For
Linux, define as RTOS = OSC_LINUX.

Compilation Flag Meaning
LINUX_ADV_REALTIME The value is to be used only when RTOS selection is

OSC_LINUX. If your Linux distribution supports
LINUX_ADV_REALTIME then you would want to set
this define to 1 as shown below:
LINUX_ADV_REALTIME = 1

This would provide a better performance and timer
resolution and also will take advantage of the
advanced real-time extensions offered under some
Linux distributions.

Based on the compiler tools that you use, please select any one of the following definitions
below (if your choice is not listed, you can ignore this pre-processor flag):

Compilation Flag Meaning
ARM_TOOLS Using ADS tools from ARM® Ltd
GNU_TOOLS Using GNU Tools
MQX_TOOLS Using Metaware® Tools from ARC® International

Programmers Guide For MapuSoft Standalone Products

77

Select the OS Changer components for your application use as follows:

Compilation Flag Meaning
INCLUDE_OSC_ANSI This flag is NOT supported under LINUX OS
INCLUDE_OSC_IO Define this flag if your application needs the OS

Changer I/O API support
INCLUDE_OSC_PSOS Define this flag if your application needs to use the

pSOS compatibility APIs (optional product)
INCLUDE_OSC_VXWOR
KS

Define this flag if your application needs to use the
VxWorks compatibility APIs (optional product)

INCLUDE_OSC_POSIX Define this flag if your application needs to use the
POSIX compatibility APIs (optional product)

Select if running under windows emulation and prototyping environment:

Compilation Flag Meaning
BUILDING_ON_WIN32 This option is NOT supported under RTOS = LINUX at

the moment mainly because Cygwin does not support
all the required posix APIs that OS Changer needs.

If you are building on Windows computer using RTOS
prototyping environment (NOT instruction set
simulator) then define this flag. Also you should not
define this flag if you are building the application for a
specific target.

Select the following definition if you want to OS Changer to enable error checking for
debugging purposes:

Compilation Flag Meaning
OSC_DEBUG_INFO Enable error checking for debugging

Programmers Guide For MapuSoft Standalone Products

78

Sample Porting of VxWorks Application with OS Changer using
OSPAL

OS Changer is designed to be used as a C library. Services used inside your application
software are extracted from the OS Changer and TARGET OS libraries. They are then
combined with the other application objects to produce the complete image. You can
download this image to the target system, or place it in ROM on the target system.

To start using VxWorks™ OS Changer, do the following:

Create a New Project

You have to create a new project in OS PAL for the application.

To create a new project:

1. From OS PAL main window, select any project under C/C++ Projects tab on the left
pane.

2. Select File > Porting > VxWorks > Import Workbench Project. You can also click on

the Porting icon from the task bar.
3. On OS PAL Import window, select a workspace directory to search for existing

workbench projects by clicking on Browse button next to the text box, and click Next.
4. In the Projects in Workspace window, the projects list is displayed in a Checkbox

Tree. Applications and Libraries are separated into respective categories.
5. Select or deselect any one or all of the projects by selecting the check box next to the

project name and click Finish to import the project.
6. If you select any application type project, provide the inputs for the project and click

OK. If you do not want to provide the inputs, you can just click Cancel.
7. If you select an application project and if it contains any referenced projects not

selected by you, then a Confirmation dialogue box is displayed on your screen to ask
if you want to port the project.

8. After the porting is successfully done, the porting report page is displayed. Click Done
to complete the process.

9. The ported projects are displayed in OS PAL projects perspective.

You have successfully imported your VxWorks application to OS PAL.

Programmers Guide For MapuSoft Standalone Products

79

Link-in MapuSoft Technologies Products with the Application

Now that you have your application is in OS PAL, you are ready to link-in MapuSoft
products.

To link-inMT’s products with the application:

1. Double click os_application_start.c in the Source folder in your project to open it.
2. Replace the contents by copying all of the content from os_application_start.txt

(found in the folder with the sample VxWorks application files) and pasting it over
everything in the original file and click Save. Note: You have replaced the template
file created by OS PAL with code customized for your application.

3. Double click on the windDemo.c file in the Source folder in your project to open it.
4. Comment out the #include directives by adding /* at the beginning and */ at the end

since the application will not need them anymore.
NOTE: The text should turn green once the comment is active.

/*
#include "vxWorks.h"
#include "semLib.h"
#include "taskLib.h"
#include "msgQLib.h"
#include "wdLib.h"
#include "logLib.h"
#include "tickLib.h"
#include "sysLib.h"
#include "stdio.h"
*/

5. Link-in MT’s header files with the application by adding the following right below
where you typed */ and click Save.

#include "osabstractor.h"
#include "oschanger_vxworks.h"

Build the Application to Include MT’s Products

You have to rebuild the application to include MT’s products.

To build the application:

 Select the top level (the project name) of the project that you have created, right click
and select Build Project.

Programmers Guide For MapuSoft Standalone Products

80

Run the Application on the Host in OS PAL

Now that your application is using MapuSoft’s products, you can run this real-time
VxWorks application on a host for simulation and debugging. MapuSoft provides the
best possible simulation because we do not add a scheduler which would cause a
performance strain. The only constraint for this application is the non real-time OS,
Windows, being used as a host. Also, debugging on a readily available host machine,
such as the Windows computer is much easier than debugging directly in the target
environment.

To run the application on the Host in OS PAL:

1. Select the project that you have created, right click and select Debug As > Open
Debug Dialog.

2. Click on New icon on the top left corner (first icon, blank page with a plus).
3. Click on Debugger tab.
4. From the Debugger drop down menu, select OS PAL Supplied GDB.
5. When the Debug perspective is open, click Debug and click Resume (yellow and green

play arrow). The debugger console (black box) should automatically appear in
Windows task bar. Open it to show the application’s execution.

6. Your VxWorks application is now running on the host. When finished, close the
console to stop it from running.

Programmers Guide For MapuSoft Standalone Products

81

Generate Code on the New Target OS

You can now move your VxWorks application to your target OS, for example Linux*.

*MapuSoft Technologies support the following targets: Threadx, Nucleus, Solaris,
Windows XP, micro-ITRON, VxWorks, MQX, Linux, and QNX, LynxOS.

To generate code on the new target OS:

1. Click OS PAL Projects Perspective button to get back to your project.
2. Select the project that you have created and click on the Optimizer button.
3. Select the target OS you want to run this application now from the drop down menu.
4. Select the check box next to Generate Project File.
5. Choose a folder to save the files (make sure the folder has no spaces in the name) and

click Next.
6. In the File Path to Store Profiler Data box, type the path to your OS PAL project

“/folder name/project name”.
7. Enter 500 in the Number of Messages to Hold in Memory box (replace default).
8. Enter 500 in the Number of Profiler Messages box (replace default).
9. Click on Platform API Profiling tab.
10. Select the box next to Enable Platform Profiling. This provides you with data

concerning utilization of MapuSoft’s APIs in your application. You can also view
graphs and charts that detail performance data such as API execution time.

11. Click on Application Functions Profiling tab. This provides you with data
concerning the functions in your application. This data is presented in charts and
graphs to analyze and identify bottlenecks which are slowing down your application.

12. Select Enable Application Function(s) Profiling.
13. Enter the name “taskHighPri” in the Application Function box and click Add.
14. Enter the name “taskLowPri” in the Application Function box and click Add.
15. Click Next.
16. Show the Inline Feature, but keep it as default and click Next.
17. Show each configuration tab (leave all options as default with Task Pooling and

Process Features turned off – they won’t work with this sample application).
18. Click Finish.

Programmers Guide For MapuSoft Standalone Products

82

Run the Application on the Target OS

Now that MapuSoft’s products have been generated for your application, you are now
ready to run the legacy VxWorks application on Linux.

Note: For the file coping to work, you must use Ethernet on the LAN, not wireless. You
may also need to disable the firewalls on your computer (anti-virus and Windows).

To run the application on the Target OS:

1. Browse to the folder on your computer where you choose to save the generated
files.

2. Copy the folder and paste it into your Shared Documents Folder.
3. Start the Microsoft Virtual PC program.
4. Double click on CENTOS.
5. Click on Applications > Network Servers.
6. Double click on the share with your name (you might have to browse to where you

have saved your generated folder on your shared drive).
7. Copy the folder and paste it into the Root folder (Root’s home icon on desktop).
8. Browse into the generated folder until you see the makefile, make a note of the

path (if you cannot see the path, click edit > preferences and navigate to the
second tab Behavior, and select the check box next to Always open in browser
windows box. Exit and return to your folder).

9. Right click on the blank space on the desktop and select Open Terminal.
10. Enter cd /”path that is displayed when you browsed to the makefile in Step 9” (For

example, cd /root/example_folder), and click Enter.
11. Enter “make clean all ROOT_DIR=$PWD”, and click Enter.
12. You can see some Warnings. It is OK to view the warnings but be careful with the

Errors.
13. Enter “/your-project-name_out”, and click Enter.
14. Click Control, C to stop the application.

Now your VxWorks application is running on Linux.

If you wish to port this application to a different OS, you only need to repeat the code
generation steps (Step 6 and 7) and choose a different OS. This provides true cross-OS
development.

Programmers Guide For MapuSoft Standalone Products

83

Revision History

Document Title: Programmers Guide for MapuSoft Standalone Products in MS
Word
Release Number: 1.3.5

Release Revision Orig. of
Change

Description of Change

1.3.5 0.1 Vv New document
 Updated UITRON with micro-

ITRON
 Added revision history
 Renamed Getting started to

Programmers Guide
 Changed the Programmers

Guide description on page 8

Programmers Guide For MapuSoft Standalone Products

Programmers Guide For

MapuSoft Standalone Products

Copyright (c) 2009

MapuSoft Technologies

1301 Azalea Road

Mobile, AL 36693

Copyright

The information contained herein is subject to change without notice. The materials located on the Mapusoft. (”MapuSoft”) web site are protected by copyright, trademark and other forms of proprietary rights and are owned or controlled by MapuSoft or the party credited as the provider of the information.

MapuSoft retains all copyrights and other property rights in all text, graphic images, and software owned by MapuSoft and hereby authorizes you to electronically copy documents published herein solely for the purpose of reviewing the information.

You may not alter any files in this document for advertisement, or print the information contained herein, without prior written permission from MapuSoft.

MapuSoft assumes no responsibility for errors or omissions in this publication or other documents which are referenced by or linked to this publication. This publication could include technical or other inaccuracies, and not all products or services referenced herein are available in all areas. MapuSoft assumes no responsibility to you or any third party for the consequences of an error or omissions. The information on this web site is periodically updated and may change without notice.

This product includes the software with the following trademarks:

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a trademark of X/Open.

IBM PC is a trademark of International Business Machines, Inc.

Nucleus PLUS and Nucleus NET are registered trademarks of Mentor Graphics Corporation.

Linux is a registered trademark of Linus Torvald.

VxWorks and pSOS are registered trademarks of Wind River Systems.

For additional assistance, please contact us at:

MapuSoft Technologies
1301 Azalea Road
Mobile, Alabama 36693
251.665.0280
251.660.0288 FAX

support@mapusoft.com

info@mapusoft.com

http://www.mapusoft.com

Last Revised: 14/05/2009

Copyright (©) 2009, All Rights Reserved

Table of Contents

6Chapter 1.
About this Guide

7Objectives

7Document Conventions

8MapuSoft Technologies and Related Documentation

9Requesting Support

9Registering a New Account

9Submitting a Ticket

9Live Support Offline

10Chapter 2.
Introduction to OS Abstractor

11OS Abstractor Frame Work

11Introduction to OS Abstractor Products

11Installing OS Abstractor Products

11How to Use OS Abstractor

12Building BASE OS Abstractor Library

12Building BASE OS Abstractor Demo Application

12Building POSIX OS Abstractor

12Building POSIX OS Abstractor Library

12Building POSIX OS Abstractor Demo Application

13Building micro-ITRON OS Abstractor

13Building micro-ITRON OS Abstractor Library

13Building micro-ITRON OS Abstractor Demo Application

13Building VxWorks OS Changer

13Building VxWorks OS Changer Library

13Building VxWorks OS Changer Demo Application

14Building pSOS OS Changer

14Building pSOS OS Changer Library

14Building pSOS OS Changer Demo Application

14Building Nucleus OS Changer

14Building Nuceus OS Changer Library

14Building Nucleus OS Changer Demo Application

15Chapter 3.
OS Changer Framework

16Introduction to OS Changer

16About OS Changer

17How to Use OS Changer

17Conditional Compilations

18Porting Applications from Legacy Code to Target OS

18OS Changer Defines

19API Variations

19Error Handling

20Chapter 4.
Using OS Abstractor with Native Tools

21OS Abstractor Tool Sets

22Using OS Abstractor under GNU Makefile Environment

23Building with Eclipse IDE

24Building with Windriver Workbench

24Building with QNX Momentics

25Building with Visual Studio 6.0

26Chapter 5.
System Configuration

27System Configuration

27Target OS Selection

28OS HOST Selection

28Target 64 bit CPU Selection

29User Configuration File Location

30OS Changer Components Selection

31POSIX OS Abstractor Selection

31OS Abstractor Process Feature Selection

32OS Abstractor Task-Pooling Feature Selection

34OS Abstractor Profiler Feature Selection

35OS Abstractor Output Device Selection

35OS Abstractor Debug and Error Checking

36OS Abstractor ANSI API Mapping

37OS Abstractor External Memory Allocation

37OS Abstractor Resource Configuration

39OS Abstractor Minimum Memory Pool Block Configuration

40OS Abstractor Application Shared Memory Configuration

41OS Abstractor Clock Tick Configuration

42OS Abstractor Device I/O Configuration

43OS Abstractor Target OS Specific Notes

43Nucleus PLUS Target

43Precise/MQX Target

44Linux Target

46Single-process Application Exit

46Multi-process Application Exit

46Manual Clean-up

46Multi-process Zombie Cleanup

46Task’s Stack Size

47SMP Flags

47Windows Target

47QNX Target

49VxWorks Target

50Application Initialization

50Example: BASE OS Abstractor for Windows Initialization

52Example: POSIX OS Abstractor for Windows Target Initialization

53‘Runtime Memory Allocations

54Runtime Memory Allocations

54OS Abstractor

54POSIX OS Abstractor

55micro-ITRON OS Abstractor

56OS Changer VxWorks

56OS Changer pSOS

56OS Changer Nucleus

57OS Abstractor Process Feature

58Simple (single-process) Versus Complex (multiple-process) Applications

59Memory Usage

60Memory Usage under Virtual memory model based OS

60Multi-process Application

60Single-process Application

61Memory Usage under Single memory model based OS

61Multi-process Application

63Single-process Application

64POSIX OS Abstractor Configuration

64Porting POSIX Legacy Code with OS Abstractor

65POSIX OS Abstractor – API Deviations

66Chapter 6.
OS Changer Porting Examples

67Sample Porting of pSOS Application to Linux with OS Changer

70OS Changer Overview

71About pSOS OS Changer

71OS Changer and Linux OS Integration

71How to Use pSOS OS Changer

73OS Changer Library Initialization

74Device Drivers Initialization

75Linux Time and Clock Initialization

75Memory Usage

75Priority Mapping from pSOS to Linux

76Conditional Compilations

78Sample Porting of VxWorks Application with OS Changer using OSPAL

78Create a New Project

79Link-in MapuSoft Technologies Products with the Application

79Build the Application to Include MT’s Products

80Run the Application on the Host in OS PAL

81Generate Code on the New Target OS

82Run the Application on the Target OS

83Revision History

Chapter 1. About this Guide

This chapter contains the following topics:

· Objectives

· Document Conventions

· MapuSoft Technologies and Related Documentation

· Requesting Support

Objectives

This manual contains instructions on how to get started with the Mapusoft products. The intention of the document is to guide the user to install, configure, build and execute the applications using Mapusoft products.

Document Conventions

Table 1 defines the notice icons used in this manual.

Table 1: Notice Icons

		Icon

		Meaning

		Description

		

		Informational note

		Indicates important features or icons.

		[image: image1.png]

		Caution

		Indicates a situation that might result in loss of data or software damage.

Table 2 defines the text and syntax conventions used in this manual.

Table 2: Text and Syntax Conventions

		Convention

		Description

		Courier New

		Identifies Program listings and Program examples.

		Italic text like this

		Introduces important new terms.

· Identifies book names

· Identifies Internet draft titles.

		COURIER NEW, ALL CAPS

		Identifies File names.

		Courier New, Bold

		Identifies Interactive Command lines

MapuSoft Technologies and Related Documentation

		Document

		Description

		Programmers Guide to Mapusoft Products

		Provides detailed description of how to get started with MapuSoft Abstraction frame work and porting applications.

· Explains how to generate standalone OS Abstractor/OS Changer packages

		OS Abstractor Reference Manual

		Provides detailed description of how to do abstraction solution. This guide:

· Explains how to develop code independent of the underlying OS

· Explains how to make your software easily support multiple OS platforms

		OS Changer Reference

Manual

		Provides detailed description of how to get started with OS Changer. This guide:

· Explains how to port applications to target platforms

		OS PAL User Guide

		Provides detailed description of how to use OS PAL. This guide:

· Explains how to port applications

· Explains how to import legacy applications

· Explains how to do code optimization

		Release Notes

		Provides the updated release information about MapuSoft Technologies new products and features for the latest release.

This document:

· Gives detailed information of the new products

· Gives detailed information of the new features added into this release and their limitations, if required

All the documents are available at http://mapusoft.com/products/techdata/.

Requesting Support

Technical support is available through the MapuSoft Technologies Support Center. If you are a customer with an active MapuSoft support contract, or covered under warranty, and need post sales technical support, you can access our tools and resources online or open a ticket at http://mapusoft.com/support/.

To submit a ticket, you need to register for a new account.

Registering a New Account

To register:

1. From OS PAL main page, select Support.

2. Select Register and enter the required details.

3. After furnishing all your details, click Submit.

Submitting a Ticket

To submit a ticket:

1. From OS PAL main page, select Support > Submit a Ticket.

2. Select a department according to your problem, and click Next.

3. Fill in your details and provide detailed information of your problem.

4. Click Submit.

MapuSoft Support personnel will get back to you within 48 hours with a valid response.

Live Support Offline

MapuSoft Technologies also provides technical support through Live Support offline.

To contact live support offline:

1. From OS PAL main page, select Support > Live Support Offline.

2. Enter your personal details in the required fields. Enter a message about your technical query. One of our support personnel will get back to you as soon as possible.

3. Click Send.

You can reach us at our toll free number: 1-877-627-8763 for any urgent assistance.

Chapter 2. Introduction to OS Abstractor

This chapter contains the OS Abstractor framework with the following topics:

· Introduction to OS Abstractor

· Installing OS Abstractor Products

· Installing OS Abstractor

· How to Use OS Abstractor

· Building BASE OS Abstractor Library

· Building BASE OS Abstractor Demo Application

· Building POSIX OS Abstractor

· Building POSIX OS Abstractor Library

· Building POSIX OS Abstractor Demo Application

· Using OS Abstractor under GNU Makefile

· Building micro-ITRON OS Abstractor

OS Abstractor Frame Work

 Introduction to OS Abstractor Products

The following are the OS Abstractor products:

· BASE OS Abstractor

· POSIX

· micro-ITRON

· VxWorks

· pSOS

· Nucleus

OS Abstractor is designed for use as a C library. Services used inside your application software are extracted from the OS Abstractor libraries and are then combined with the other application objects to produce the complete image. This image may be downloaded to the target system or placed in ROM on the target system. OS Abstractor will also function under various host environments.

Application developers need to specify the target operating system that the application and the libraries are to be built for inside the project build scripts. Application developers can also customize OS Abstractor to include only the components that are needed and exclude the ones that are not required for their application.

If the Application also uses OS Changer products, additional configuration may be necessary. Please refer to the individual OS Changer documents.

Installing OS Abstractor Products

To install OS Abstractor products:

1. From OS PAL main menu, click on the Generate Standalone product button [image: image2.png] or select Tools > Generate Standalone on OS PAL main page.

2. Select the Target OS from the list and click Next.

3. Select the OS Changer or OS Abstractor products needed to create the standalone project and click Next.

4. Select the destination path to save the generated package and click Finish.

The successful standalone generation is displayed on Generator Verification window.

How to Use OS Abstractor

The steps for using OS Abstractor are described in the following generic form:

1. Include osabstractor.h in all your application source files.

2. Set the appropriate compiler switches within the project build files to indicate the target OS and other target configurations

3. Configure the pre-processor defines found in the osabstractor_usr.h header file under each target OS folder to applications requirements

4. Initialize the OS Abstractor library by calling OS_Application_Init() function. If you are also using POSIX OS Abstractor, then also use OS_Posix_Init() function call to initialize the POSIX component as well. If you use OS Changer(s), you may need to call other appropriate initialization functions as well. After initialization, create your initial application resources and start the application’s first task. After this and within the main thread, call OS_Application_Wait_For_End() function to suspend the main thread and wait for application re-start or termination requests.

5. Compile and link your application using appropriate development tools.

6. Download the complete application image to the target system and let it run.

Refer to the sample demo applications provided with OS Abstractor as a reference point to start your application. Please review the target processor and appropriate development tools documentation for additional information, including specific details on how to use the compiler, assembler, and linker.

Building BASE OS Abstractor Library

Before using OS Abstractor, make sure the OS and tools are configured correctly for your target. To ensure this, compile, link and execute a native sample demo application that is provided by the OS vendor on your target. Refer to the OS vendor provided documentation on how to compile, link, download, and debug the demo applications for your specific target and toolset. After this step, you are ready to use the OS Abstractor library to develop your applications.

Building BASE OS Abstractor Demo Application

The demo application is located at the \mapusoft\demo\osabstractor directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building POSIX OS Abstractor

Before building the POSIX OS Abstractor library and/or application, ensure that the flags INCLUDE_OS_POSIX and INCLUDE_OS_PROCESS are set to OS_TRUE in the osabstractor_usr.h configuration file.

Building POSIX OS Abstractor Library

The POSIX OS Abstractor library is located at \mapusoft\osabstractor_posix directory. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building POSIX OS Abstractor Demo Application

The demo application is located at the \mapusoft\demo_osabstractor_posix directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory. We need to have the Base OS Abstractor Library. It has to be included in all the OS Changer/Abstractor demos.

After every demo application, include/link in the POSIX base Abstractor library.

Building micro-ITRON OS Abstractor

Before building the micro-ITRON OS Abstractor library and/or application, ensure that the flag INCLUDE_OS_UITRON is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building micro-ITRON OS Abstractor Library

The micro-ITRON OS Abstractor library is located at \mapusoft\ uitron_osabstractor directory. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building micro-ITRON OS Abstractor Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_uitron directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building VxWorks OS Changer

Before building the VxWorks OS Changer library and/or application, ensure that the flag INCLUDE_OS_VxWorks is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building VxWorks OS Changer Library

The VxWorks OS Changer library is located at \mapusoft\ VxWorks_osabstractor directory. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building VxWorks OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_VxWorks directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building pSOS OS Changer

Before building the pSOS OS Changer library and/or application, ensure that the flag INCLUDE_OS_pSOS is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building pSOS OS Changer Library

The pSOS OS Changer library is located at \mapusoft\ pSOS_osabstractor directory. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building pSOS OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_pSOS directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building Nucleus OS Changer

Before building the Nucleus OS Changer library and/or application, ensure that the flag INCLUDE_OS_Nucleus is set to OS_TRUE in the osabstractor_usr.h configuration file.

Building Nuceus OS Changer Library

The pSOS OS Changer library is located at \mapusoft\ Nucleus_osabstractor directory. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Building Nucleus OS Changer Demo Application

The demo application is located at the \mapusoft\ demo_osabstractor_Nucleus directory location. From this location, you will find the make files or project files at the appropriate specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to be built for Nucleus PLUS OS using visual studio 6 tools and for x86 target, then the make file location will be at specific\nucleus\visual_studio_6\x86 directory.

Chapter 3. OS Changer Framework

This chapter contains the following topics:

· About OS Changer

· How to Use OS Changer

· Conditional Compilations

· Porting Applications from Legacy Code to Target OS

· OS Changer Defines

· API Variations

Introduction to OS Changer

OS Changer is designed for use as a C library. Services used inside your application software are extracted from the OS Changer and TARGET OS libraries, and, are then combined with the other application objects to produce the complete image.

For more information on OS Changer Frame work, refer to the OS Changers section of this document.

About OS Changer

OS Changer provides extensive support to various common proprietary libraries widely used by the application developers. Further, developers can utilize the native TARGET OS interface as well. This works toward getting the migration effort faster, much easier and greatly reduce time-to-market period.

OS Changer is optimized to take full advantage of the underlying TARGET RTOS features. It is built to be totally independent of the target hardware and all the development tools (like compilers and debuggers).

Please note that there may be some minor implementation differences in some of the OS Changer APIs when compared to the native API’s. This may be as a result of any missing features within the underlying RTOS that OS Changer provides migration to.

[image: image3.wmf]Legacy Application

Nucleus PLUS

OS Changer

OS Abstractor for Target

OS

Target Operating System

Nucleus

NET

OS Changer

Figure 1: An example NUCLEUS OS Changer and Target OS Integration

Your legacy application can be re-usable and also portable by the support provided by the OS Changer library and the OS Abstractor library. Applications can directly use the native target OS API, however doing so will not make your code portable across operating systems. We recommend that you use the optimized abstraction APIs for the features and support that are not provided by the OS Changer compatibility library.

Note: For more information on configuration and target OS specific information, see OS Abstractor Developer section of this document.

How to Use OS Changer

OS Changer is designed for use as a C library. Services used inside your application software are extracted from the OS Changer and TARGET OS libraries, and, are then combined with the other application objects to produce the complete image. This image can be loaded to the target system or placed in ROM on the target system.

The steps for using OS Changer are described in the following generic form:

· Remove the TARGET RTOS header file defines from all the TARGET RTOS source files.

· Remove definitions and references to all the TARGET RTOS configuration data structures in your application.

· Include the OSChanger_ TARGET RTOS.h (For example, OSChanger_Nucleus.h in case of OS Changer Nucleus) and osabstractor.h in the source files.

· Modify the OS Changer init code (see sample provided) and the TARGET RTOS root task of your application appropriately. (For example, Application_Initialize)

· Compile and link your application using appropriate development tools. Resolve all compiler and linker errors.

· Port the underlying low-level drivers to Target OS.

· Load the complete application image to the target system and run the application.

· Review the processor and development system documentation for additional information, including specific details on how to use the compiler, assembler, and linker.

Conditional Compilations

For more information on target specific configuration, refer to the OS Abstractor Developer section of this document.

Porting Applications from Legacy Code to Target OS

In most applications, using OS Changer is straight forward. The effort required in porting is mostly at the underlying driver layer. Since we do not have specific information about your application, it will be hard to tell how much work is required. However, we want you to be fully aware of the surrounding issues upfront so that necessary steps could be taken for a successful and timely porting. It is possible that we have not addressed all your application specific issues, so for further information, contact MapuSoft Technologies.

OS Changer Defines

The OS Changer library contains the following respective header files:

		Module

		Description

		OSChanger_VXWORKS.h

		This header file is required in all of the vxworks source modules. This header file provides the translation layer between the vxworks defines, APIs and parameters to OS Abstraction.

		OSChanger_PSOS.h

		This header file is required in all of the PSOS source modules. This header file provides the translation layer between the pSOS defines, APIs and parameters to OS Abstraction.

		OSChanger_NUCLEUS.h

		This header file is required in all of the Nucleus PLUS source modules. This header file provides the translation layer between the Nucleus PLUS defines, APIs and parameters to OS Abstraction.

		UITRON_OSAbstractor.h

		This header file is required in all of the micro-ITRON source modules. This header file provides the translation layer between the micro-ITRON defines, APIs, and parameters to OS Abstraction

The OS Changer demo contains the following modules:

		Module

		Description

		demo.c

		Contains a sample demo application

You will find relevant make/project files for a specific RTOS in the specific RTOS directory following where you find the demo and the Changer library modules.

 API Variations

Since API support is being added in each release, contact MapuSoft to get up-to-date support information for the latest OS Changer version.

Error Handling

Applications receive a run-time error via the OS_Fatal_Error() function on some occasions. This happens due to:

· Unsupported API function call, or

· Unsupported parameter value or flag option in a API call, or

· Error occurred on the target OS for which there are no matching error codes in OS Abstractor.

OS Changer calls OS_Fatal_Error and passes along an error code and error string. The OS_Fatal_Error handling function is fully customizable to the application needs. At the moment it prints the error message if the OS_DEBUG_INFO conditional compile option is set, then OS_Fatal_Error does not return. For more details on error handling and definition of this function, refer to the OS Abstractor Reference Guide. The non-zero value in the error code corresponds to the underlying RTOS API error. Refer to the target OS documentation for a better description of the error. Error Handling section lists the errors and the reasons for the occurrence.

Chapter 4. Using OS Abstractor with Native Tools

This chapter contains the information about the System Configuration with the following topics:

· OS Abstractor Tool Sets

· Using OS Abstractor under GNU Makefile Environment

· Building with Eclipse IDE

· Building with Windriver Workbench

· Building with QNX Momentics

· Building Visual Studio 6.0

OS Abstractor Tool Sets

OS Abstractor can be used in a multitude of toolsets. The distribution only includes project files for a small subset of the tools that OS Abstractor can be used with. If the project files for the tools you are using are not included, please contact MapuSoft to set up OS Abstractor for your tools.

		Target Operating System

		Project Files Included

		Project File Paths

		Windows

		Eclipse

		\osabstractor_windows\specific\windows_xp\x86\eclipse

		

		Visual Studio 6.0

		\osabstractor_windows\specific\windows_xp\x86\visual_studio_6

		Linux

		Eclipse

		\osabstractor_linux\specific\linux\x86\eclipse

		

		Make

		\osabstractor_linux\specific\linux\x86\make

		Solaris

		Eclipse

		\osabstractor_solaris\specific\solaris\x86\eclipse

		

		Make

		\osabstractor_solaris\specific\solaris\x86\gnu

		QNX

		Momentics

		\osabstractor_qnx\specific\qnx\x86\momentics

		VxWorks

		Windriver Workbench

		\osabstractor_vxworks\specific\vxworks_rtp\x86\workbench_gnu

\osabstractor_vxworks\specific\vxworks_kernel\x86\workbench_gnu

		LynxOS

		Make

		\osabstractor_lynxos\specific\lynxos\x86\gnu

		MQX

		Metaware

		\osabstractor_mqx\specific\mqx\arc\metaware

		ThreadX

		Eclipse

		\osabstractor_threadx\specific\threadx\x86\eclipse

		

		Visual Studio 6.0

		\osabstractor_threadx\specific\threadx\x86\visual_studio_6

		Nucleus

		Eclipse

		\osabstractor_nucleus\specific\nucleus\mnt\eclipse

		

		Visual Studio 6.0

		\osabstractor_nucleus\specific\nucleus\mnt\visual_studio_6

		micro-ITRON

		Renasas

		\osabstractor_uitron\specific\sh\hew

		

		

		

The included project files for Windows, Linux, Solaris, QNX and LynxOS are setup to be used directly on the target operating system. The project files for VxWorks and MQX are setup to utilize the tools built in simulated environment. Nucleus, ThreadX, and micro-ITRON require separate OS files and simulators are provided in the following directories. These supporting projects need to be included in the workspace and built in conjunction with OS Abstractor.

		Target Operating System

		Supporting Files

		Nucleus

		\osabstractor_nucleus\specific\nucleus\mnt\mnt

		ThreadX

		\osabstractor_threadx\specific\threadx\x86\threadx_win32

		micro-ITRON

		\osabstractor_uitron\specific\sh\uitron_kernel

Using OS Abstractor under GNU Makefile Environment

Example: Build and execute application using OS Abstractor Library

Note: This example assumes all the source code, library, and makefile are in the following file structure:

OSabstractor_application

 (demo_osabstractor

 (include

 (source

 (specific

(linux

 (x86

 (gnu

 (Makefile

 (include (include

 (osabstractor_linux

 (include

 (source

 (specific

(linux

 (x86

 (gnu

 (Makefile

The rest of this topic will assume that your osabstractor_application directory is under the root directory.

To build the osabstractor library, open up a terminal and type:

$cd /root/osabstractor_application/osabstractor_linux/specific/linux/x86/gnu

$make clean all ROOT_DIR=/root/osabstractor_application/

Note: After the compilation is completed, you should see a folder called “lib” under folder “osabstractor_application” which has the “libosabstractor_linux.a” file.

To build the osabstractor demo, open up a terminal and type:

$cd /root/osabstractor_application/demo_osabstractor/specific/linux/x86/gnu/

$make clean all ROOT_DIR=/root/osabstractor_application/

Note: After the compilation is completed, you should see “osabstractor_linux_demo” executable file under directory “/root/osabstractor_application/demo_osabstractor/specific/linux/x86/gnu/”

To execute/debug the demo executable, open up a terminal and type:

$cd /root/ osabstractor_application / demo_osabstractor/ specific/linux/x86/gnu/

$gdb osabstractor_linux_demo

$run

NOTE: If you need to modify the makefiles that build the demo application and the libraries, make sure you use an editor that will NOT add the carriage return character (each line should only have the line feed character), otherwise the ‘make’ utilities will not work correctly. To remove the carriage return character that was introduced by some editors, run the dos2unix utility to convert the dos format text file to unix format.

Building with Eclipse IDE

The eclipse specific project files are located in \<specific>\<OS>\<arch>\eclipse\ where “OS” is the corresponding target operating system and “arch” is corresponding architecture. For instance, if you need the demo application to be built for linux using eclipse tools x86 target, then the corresponding eclipse project file can be located in .\demo_osabstractor\specific\linux\x86\eclipse directory.

The Eclipse framework with CDT can be downloaded from http://www.eclipse.org/downloads/

To install Eclipse, follow the instructions at http://wiki.eclipse.org/Eclipse/Installation

To configure this macro in eclipse:

1. Select Preferences under the Window menu.

2. Expand General > Workspace and select Linked Resources node.

3. Click New and enter ROOT_DIR for the name and the full path to the workspace root.

To import the project files in Eclipse:

1. Select Import from File menu.

2. Expand General folder.

3. Select Existing Projects into Workspace and click Next.

4. Click Browse and navigate to the location of the project file.

5. The project name should appear under Projects.

6. Select the project to import and click Next.

To build the OS Abstractor library:

1. Select OS Abstractor project file.

2. Choose Build Project from the Project menu.

To build the OS Abstractor Demo:

1. Select OS Abstractor Demo project file.

2. Choose Build Project from the Project menu.

To debug the OS Abstractor Demo:

1. Select OS Abstractor Demo project file.

2. Choose Open Debug Dialog from the Run menu.

3. Select C/C++ Local Application.

4. Click New Launch Configuration.

5. Click Run.

Building with Windriver Workbench

The Windriver Workbench specific project files are of two types: kernel type projects and RTP type projects are located in .\<specific>\<OS>\<arch>\workbench_gnu. i.e, specific\vxworks_kernel\x86\workbench_gnu for kernel projects and.\specific\vxworks_rtp\x86\workbench_gnu\RTP respectively. For instance, if you need the demo application to build Kernel type projects, then the corresponding workbench project file can be located in \demo_osabstractor\specific\vxworks_rtp\x86\workbench_gnu directory.

The included project files require a path variable macro called ROOT_DIR to be defined.

To configure this macro in eclipse:

1. Select Preferences under the Window menu.

2. Then expand General->Workspace and select Linked Resources node.

3. Click New and enter ROOT_DIR for the name and the full path to the workspace root.

Note: Please refer Workbench documentation on how to build and debug.

Building with QNX Momentics

The QNX Momentics related project files are located in \<specific>\<OS>\<arch>\momentics where “OS” is the corresponding target operating system and “arch” is corresponding architecture. For instance, if you need the demo application to be built for QNX using Momentics tools and x86 target, then the corresponding Momentics project file can be located in \demo_osabstractor\specific\qnx\x86\momentics\ directory.

The included project files require a path variable macro called ROOT_DIR to be defined.

To configure this macro in eclipse:

1. Select Preferences under the Window menu.

2. Then expand General->Workspace and select Linked Resources node.

3. Click New and enter ROOT_DIR for the name and the full path to the workspace root.

To import the project files in Eclipse:

1. Select Import from File menu.

2. Expand General folder.

3. Select Existing Projects into Workspace and click Next.

4. Click Browse and navigate to the location of the project file.

5. The project name should appear under Projects.

6. Select the project to import and click Next.

Note: Please refer Momentics documentation on how to build and debug.

Building with Visual Studio 6.0

The Visual Studio 6.0 specific project files are located in \<specific>\<OS>\<arch>\visual_studio_6\.where OS is the corresponding target operating system and arch is corresponding architecture. For instance, if you need the demo application to be built for Windows XP using visual studio 6.0 tools and x86 target, and then the corresponding visual studio project files can be located in \specific\windows_xp\x86\visual_studio_6 directory.

To import the project files in Visual Studio 6.0 do the following

1. Select New from File menu to create a new workspace.

2. Select Workspaces tab.

3. Enter a workspace name into the Workspace name text box.

4. Set the path to the root of location of the Mapusoft products.

5. Click OK.

6. In Workspace window choose File View tab.

7. Right click on Workspace <project name> tree node in the Workspace window and select Insert Project into Workspace.

8. Browse to the *.dsp you want to add to the project and click OK.

To build the OS Abstractor library:

1. Right click on the OS Abstractor project file.

2. Select Build from the pop-up menu.

To build the OS Abstractor Demo:

1. Right click on the OS Abstractor Demo project file.

2. Select Build from the pop-up menu.

To debug the OS Abstractor Demo:

1. Right click on the OS Abstractor Demo project file.

2. Select Set as active project from the pop-up menu.

3. Click F5 key on your keyboard.

Chapter 5. System Configuration

This chapter contains the information about the System Configuration with the following topics:

· System Configuration

· Target OS Selection

· OS HOST Selection

· Target 64 bit CPU Selection

· User Configuration File Location

· OS Changer Components Selection

· POSIX OS Abstractor Selection

· OS Abstractor Process Feature Selection

· OS Abstractor Task-Pooling Feature Selection

· OS Abstractor Profiler Feature Selection

· OS Abstractor Output Device Selection

· OS Abstractor Debug and Error Checking

· OS Abstractor ANSI API Mapping

· OS Abstractor Resource Configuration

· OS Abstractor Minimum Memory Pool Block Configuration

· OS Abstractor Application Shared Memory Configuration

· OS Abstractor Clock Tick Configuration

· OS Abstractor Device I/O Configuration

· OS Abstractor Target OS Specific Notes

System Configuration

The user configuration is done by setting up the appropriate value to the pre-processor defines found in the osabstractor_usr.h.

NOTE: Make sure the OS Abstractor libraries are re-compiled and newly built whenever configuration changes are made to the osabstractor_usr.h when you build your application. In order to re-build the library, you would actually require the full-source code product version (not the evaluation version) of OS Abstractor.

Applications can use a different output device as standard output by modifying the appropriate functions defines in osabstractor_usr.h along with modifying os_setup_serial_port.c module if they choose to use the format I/O calls provided by the OS Abstractor.

Target OS Selection

Based on the OS you want the application to be built, set the following pre-processor definition in your project setting or make files:

		Flag and Purpose

		Available Options

		OS_TARGET
To select the target operating system.

		The value of the OS_Target should be for the OS Abstractor product that you have purchased. For Example, if you have purchased the license for :

OS_NUCLEUS – Nucleus PLUS(from ATI

OS_THREADX – ThreadX(from Express Logic

OS_VXWORKS – VxWorks(from Wind River Systems

OS_ECOS – eCOS standards from Red Hat

OS_MQX - Precise/MQX(from ARC International

OS_UITRON – micro-ITRON standard based OS

OS_PSOS – pSOS systems from Wind River Systems

OS_LINUX - Open-source/commercial Linux(distributions

OS_WINDOWS – Windows 2000, Windows XP(, Windows CE, Windows Vista from Microsoft. If you need to use the OS Abstractor both under Windows and Windows CE platforms, then you will need to purchase additional target license.

OS_TKERNEL – Japanese T-Kernel(standards based OS

OS_LYNXOS - LynxOS(from LynuxWorks

OS_QNX – QNX operating system from QNX

OS_LYNXOS – LynxOS from Lynuxworks

OS_SOLARIS – Solaris from SUN Microsystems

For example, if you want to develop for ThreadX, you will define this flag as follows:

OS_TARGET = OS_THREADX

PROPRIETARY OS: If you are doing your own porting of OS Abstractor to your proprietary OS, you could add your own define for your OS and include the appropriate OS interface files within osabstractor.h file. MapuSoft can also add custom support and validate the OS Abstraction solution for your proprietary OS platform

OS HOST Selection

The flag has to be false for standalone generation.

		OS_HOST

To select the host operating system

		This flag is used only in OS PAL environment. It is not used in the target environment. In Standalone products, this flag should be set to OS _FALSE.

Target 64 bit CPU Selection

Based on the OS you want the application to be built, set the following pre-processor definition in your project setting or make files:

		Flag and Purpose

		Available Options

		OS_CPU_64BIT
To select the target CPU type.

		The value of OS_CPU_64BIT can be any ONE of the following:

OS_TRUE – Target CPU is 64 bit type CPU

OS_FALSE – Target CPU is 32 bit type CPU

NOTE: This value cannot be set in the osabstractor_usr.h, instead it needs to be passed to compiler as –D macro either in command line for the compiler or set this pre-processor flag via the project settings. If this macro is not used, then the default value used will be OS_FALSE.

User Configuration File Location

The default directory location of the osabstractor_usr.h configuration file is given below:

		Target OS

		Configuration Files Directory Location

		OS_NUCLEUS

		\mapusoft\osabstractor_nucleus\include

		OS_THREADX

		\mapusoft\osabstractor_threadx\include

		OS_VXWORKS

		\mapusoft\osabstractor_vxworks\include

Please make sure you specify the appropriate target OS versions that you use in the osabstractor_usr.h

		OS_MQX

		\mapusoft\osabstractor_mqx\include

		OS_UITRON

		\mapusoft\osabstractor_uitron\include

		OS_LINUX

		\mapusoft\osabstractor_linux\include

Please make sure you specify the appropriate target OS versions that you use in the osabstractor_usr.h

NOTE: RT Linux, for using rtlinux you need to select this option.

		OS_SOLARIS

		\mapusoft\osabstractor_solaris\include

		OS_WINDOWS

		\mapusoft\osabstractor_windows\include

Any windows platform including Windows CE platform. If you use OS Abstractor under both Windows and Windows CE, then you would require additional target license.

NOTE: Windows 2000, Windows XP(, Windows CE, Windows Vista from Microsoft

		OS_ECOS

		\mapusoft\osabstractor_ecos\include

		OS_LYNXOS

		\mapusoft\osabstractor_lynxos\include

		OS_QNX

		\mapusoft\osabstractor_qnx\include

		OS_TKERNEL

		\mapusoft\osabstractor_tkernel\include

If you have installed the MapuSoft’s products in directory location other than mapusoft then refer the corresponding directory instead of \mapusoft for correct directory location.

OS Changer Components Selection

OS Abstractor optional comes with various OS Changer API solutions in addition to its BASE and POSIX API offerings. OS Changer APIs are used to port legacy code base from one OS to another. Select one or more OS Changer components depending on the type of code that you needed to port to one or more new operating system platforms. Set the pre-processor flag below to select the components needed by your application:

		Flag and Purpose

		Available Options

		INCLUDE_OS_VXWORKS

To include VxWorks OS Changer product. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

		INCLUDE_OS_PSOS

To include pSOS OS Changer product. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

		INCLUDE_OS_PSOS_CLASSIC

To include a very old version of pSOS OS Changer product. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support for pSOS 4.1 rev 3/10/1986

OS_FALSE – do not include pSOS 4.1 support

The default is OS_FALSE

		INCLUDE_OS_NUCLEUS

To include Nucleus PLUS OS Changer product. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

		INCLUDE_OS_NUCLEUS_NET

To include Nucleus NET OS Changer product. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

		INCLUDE_OS_UITRON

To include micro-ITRON OS Abstractor product.

Refer to the appropriate OS Abstractor manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

		INCLUDE_OS_FILE

To include ANSI file system API compliance for the vendor provided File Systems. Refer to the appropriate OS Changer manual for more details.

		OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

This option is only available for Nucleus PLUS target OS

NOTE: For additional information regarding how to use any specific OS Changer product, refer to the appropriate reference manual or contact www.mapusoft.com.

POSIX OS Abstractor Selection

OS Abstractor optionally comes with POSIX support as well. Set the pre-processor flag provided below to select the POSIX component for application use as follows:

		Flag and Purpose

		Available Options

		INCLUDE_OS_POSIX

To include POSIX OS Abstractor product component.

		OS_TRUE – Include support. You will need this option turned ON either if the underlying OS does not support Posix (or) you need to Posix provided by OS Abstractor instead of the Posix provided natively by the target OS

OS_FALSE – Do not include support

The default is OS_FALSE.

note: The above component can be used across POSIX based and non-POSIX based target OS for gaining full portability along with advanced real-time features. POSIX OS Abstractor library will provide the POSIX functionality instead of application using POSIX functionalities directly from the native POSIX from the OS and as a result this will ensure that your application code will work across various POSIX/UNIX based target OS and also its various versions while providing various real-time API and performance features. In addition, OS Abstractor will allow the POSIX application to take advantage of safety critical features like task-pooling, fixing boundary for application’s heap memory use, self recovery from fatal errors, etc. (these features are defined else where in this document). For added flexibility, POSIX applications can also take advantage of using BASE OS Abstractor APIs non-intrusively for additional flexibility and features.

OS Abstractor Process Feature Selection

		Flag and Purpose

		Available Options

		INCLUDE_OS_PROCESS

		OS_TRUE – Include OS Abstractor process support APIs and track resources under each process and also allow multiple individually executable applications to use OS Abstractor

OS_FALSE – Do not include process model support. Use this option for optimized OS Abstractor performance

The default is OS_FALSE

The INCLUDE_OS_PROCESS option is useful when there are multiple developers writing components of the applications that are modular. The resource created by the process is automatically tracked and when the process goes away they also go away. One process can use another process resource, only if that process is created with “system” scope. A process cannot delete a resource that it did not create.

The INCLUDE_OS_PROCESS feature can also be used on target OS like VxWorks 5.x a non-process based operating system. In this case, the OS Abstractor provides software process protection. Under process-based OS like Linux, the processes created by the OS Abstractor will be an actual native system processes.

The INCLUDE_OS_PROCESS feature is also useful to simulate complex multiple embedded controller application on x86 single processor host platform. In this case, each individual process/application will represent individual controllers, which uses a shared memory region for inter-communication. This application could then be ported to the real multiple embedded controller environments with shared physical memory.

For more information regarding the process feature, refer to the section titled “Process Support” in the “Function Reference” chapter in this manual.

Process Feature use within OS Changer

It is possible for legacy applications to use the process feature along with OS Changer and take advantage of process protection mechanism and also have the ability to break down the complex application into multiple manageable modules to reduce complexity in code development. However, when porting legacy code, we recommend that the application be first ported to a single process successfully. Once this is completed, then the application can be modified to move the global data to shared memory and can be made to easily reside into individual process and or multiple executables.

To allow the legacy applications to be broken down into process modules and/or multiple applications the flag INCLUDE_OS_PROCESS needs to be set to OS_TRUE. Also the application needs to use OS_Create_Process envelopes to move the resources to appropriate processes. Legacy application can also make in multiple applications which then compile separately and can continue to use OS Changer APIs for inter-process communication. OS Changer APIs provides transparency to the application and allows the application to use the API among resources within a single process or multiple processes/applications.

OS Abstractor Task-Pooling Feature Selection

Task-Pooling feature enhances the performances and reliability of application. Creating a task (thread) at run-time require considerable system overhead and memory. The underlying OS thread creation function call can take considerable amount of time to complete the operation and could fail if there is not enough system memory. Enabling this feature, Applications can create OS Abstractor tasks during initialization and be able to re-use the task envelope again and again. To configure task-pooling, set the following pre-processor flag as follows:

		Flag and Purpose

		Available options

		INCLUDE_OS_TASK_POOLING

		OS_TRUE – Include OS Abstractor task pooling feature to allow applications to re-use task envelops from task pool created during initialization to eliminate run-time overhead with actual resource creation and deletion

OS_FALSE – Do not include task pooling support

The default is OS_FALSE

Except for the performance improvement, this behavior will be transparent to the application. Each process/application will contain its own individual task pool. Any process, which requires a task pool, must successfully add tasks to the pool before it can be used. Tasks can be added to (via OS_Add_To_Task_Pool function) or removed (via OS_Remove_From_Task_Pool function) from a task pool at anytime.

When an application makes a request to use a pool task, OS Abstractor will first search for a free task in the pool with an exact match based on stack size. If it does not find a match, then a free task with the next larger stack size that is available will be used. If there are multiple requests pending, a search will be made in FIFO order on the request list when a task is freed to the pool. The first request that matches or fulfills the stack requirement will then be fulfilled.

Refer to the MapuSoft supplied os_application_start.c file that came with the MapuSoft’s demo application. The demo application pre-creates a bunch of fixed-stack-size (using STACK_SIZE as defined in osabstractor_def.h) task-pool-task as shown below:

#if (INCLUDE_OS_TASK_POOLING == OS_TRUE)

for(i = 0; i < Max_Threads; i++)

{

OS_Add_To_Task_Pool(STACK_SIZE); /*this is a portion of code in init.c,

STACK_SIZE should be changed

according to the desired stack size

}

#endif

Typically, applications would need a variety of threads with different stack size. If you would like to modify the demo application to use threads with larger or differing stack size, make sure you modify the os_application_start.c file according to your needs.

The OS_Create_Task function will be used to retrieve a task from the task pool. This will be accomplished by passing one of the flags OS_POOLED_TASK_WAIT or OS_POOLED_TASK_NOWAIT as a parameter to OS_Create_Task. When a task has completed and either exits, falls through itself or gets deleted by another task using the OS_Delete_Task function, the task will automatically be freed to be used again by the task pool. For further details, please refer to the OS_Create_Task specification defined in the following pages.

An Application can add or remove tasks with a specified stack size to the task pool at any time. The task pool will grow or shrink depending on each addition or deletion of tasks in the task pool. The Application cannot remove a valid task, which does not belong to the task pool. OS_Get_System_Info function can be used to retrieve the system configuration and run-time system status including information related to task pool.

If OS_TASK_POOLING is enabled, then all tasks posix threads created using the POSIX OS Abstractor POSIX APIs provided by POSIX OS Abstractor with POSIX and/or any task creation created using task create functions in any OS Changer products will automatically use the task pool mechanism with the flag option set to OS_POOLED_TASK_NOWAIT.

Warning: Your application will fail during task creation if OS_TASK_POOLING is enabled and you have not added any tasks to the task pool. Make sure you add tasks (via OS_Add_To_Task_Pool function) with all required stack sizes prior to creating pooled tasks (via OS_Create_Task function).

Special Notes: Task Pooling feature is not supported in ThreadX and Nucleus targets.

OS Abstractor Profiler Feature Selection

The following are the user configuration options that can be set in the osabstractor_usr.h:

		Flag and Purpose

		Available Options

		OS_PROFILER

Profiler feature allows applications running on the target to collect valuable performance data regarding the application’s usage of the OS Abstractor APIs.

Using the OS PAL tool, this data can then be loaded and analyzed in graphical format. You can find out how often a specific OS Abstractor API is called across the system or within a specific thread. You can also find out how much time the functions took across the whole system as well as within a specific thread

Profiler feature uses high resolution clock counters to collect profiling data and this implementation may not be available for all target CPU and OS platforms. Please contact MapuSoft for any custom high resolution timer implementation required for the profiler for your target/OS environment. Refer to OS_Get_Hr_Clock_Freq() and OS_Read_Hr_Clock() for additional details on what target/OS platforms are currently supported by the profiler.

The current release provides profiling capabilities for BASE OS Abstractor APIs only. The future releases will add support for POSIX OS Abstractor or OS Changer APIs.

If profiler feature is turned ON, then it needs to use the open/read/write calls to write to profiler data file. If you set OS_MAP_ANSI_IO to OS_TRUE then make sure you install the appropriate file device and driver.

		Can either be:

OS_TRUE – Profiler feature will be included. Profiling takes place with each BASE OS Abstractor API call. If profiler is turned on, also set the value for the following defines:

PROFILER_TASK_PRIORITY

The priority level (0 to 255) of the profiler thread.The profiler thread starts picking up the messages in the profiler queue, formats them into XML record and write to file. If the priority is set to the lowest (i.e, 255), then the profiler thread may not have an opportunity to pick the message from the queue in time and as such the queue gets filled up and as such the profiler will stop. The default profiler task priority value is set to 200.

NUM_OF_MSG_TO_HOLD_IN_MEMORY

This will be the depth of the profiler queue. The bigger the number, the more the memory is needed. A maximum of 30,000 profiler records can be created. Please make sure you increase you application’s heap size by NUM_OF_MSG_TO_HOLD_IN_MEMORY times PROFILER_MSG_SIZE in the OS_Application_Init call.

PROFILER_DATAFILE_PATH

This will be the directory location where the profiler file will be created. The default location set is “/root”.

OS_FALSE – Profiler code will be excluded and the feature will be turned off.

The default value is OS_FALSE.

The profiler starts as soon as the application starts and will continue to collect performance data until the memory buffers in the profiler queue gets filled up. After, this the profiling stops and data is dumped into *.pal files at the user specified location. It is recommended that the profiler feature be turned off for the production release of your application.

If the profiler feature is turned OFF, then the profiler hooks disappear within the OS Abstractor and as such there are no impacts to the OS Abstractor API performance.

Special Notes: Profiler feature is not supported in ThreadX and Nucleus targets.

OS Abstractor Output Device Selection

The following are the user configuration options and their meanings:

		Flag and Purpose

		Available options

		OS_STD_OUTPUT

		Output device to print.

OS_SERIAL_OUT – Print to serial

OS_WIN_CONSOLE – Print to console

User can print to other devices by modifying the appropriate functions within os_setup_serial_port.c in the OS Abstractor “source” directory and use OS Abstractor’s format i/o calls.

The default value is OS_WIN_CONSOLE

OS Abstractor Debug and Error Checking

		Flag and Purpose

		Available Options

		OS_DEBUG_INFO

		OS_TRUE – print debug info, fatal and compliance errors

OS_FALSE – do not print debug info

The default value is OS_TRUE

		OS_ERROR_CHECKING

		OS_TRUE – Check for API usage errors

OS_FALSE – do not check for errors. Use this option to increase performance and reduce code size

The default value is OS_TRUE

		OS_IGNORE_FATAL_ERROR

		OS_TRUE – Return from OS_Fatal_Error()

OS_FALSE – Stop execution when a fatal error occurs

The default value is OS_FALSE

OS Abstractor ANSI API Mapping

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

		Flag and Purpose

		Available options

		MAP_OS_ANSI_MEMORY

		OS_TRUE – map ANSI malloc() and free() to OS abstractor equivalent functions

OS_FALSE – do not map functions. Also, when you call OS_Application_Free in this case, the memory allocated via malloc() calls will NOT be automatically freed.

The default value is OS_TRUE

Note: Refer to OS_USE_EXTERNAL_MALLOC define, if you want to connect your own memory management solution for use by OS Abstractor

		MAP_OS_ANSI_FMT_IO

		OS_TRUE – map ANSI printf() and sprintf() to OS abstractor equivalent functions

OS_FALSE – do not map functions

The default value is OS_FALSE

		MAP_OS_ANSI_IO1

		OS_TRUE – map ANSI device I/O functions like open(), close(), read(), write, ioctl(), etc. to OS abstractor equivalent functions

NOTE: If your target OS is NOT a single-memory model based (e.g. Windows, Linux, qnx, etc.), then the OS Abstractor I/O functions are to be used within one single process/application.. If you need to use the I/O across multiple process, then set this define to OS_FALSE so that your application can use the native I/O apis from the OS

OS_FALSE – do not map functions

The default value is OS_FALSE

Note: When you set MAP_OS_ANSI_IO to OS_TRUE, OS Abstractor automatically replaces open() calls to OS_open() during compile time when you include osabstractor.h in your source code. If you set MAP_OS_ANSI_IO to OS_FALSE, then in your source code when you include osabstractor.h, application can actually use both OS_open() and open() calls, where the OS_open will come from OS Abstractor library and open() will come from the native OS library. Given that OS Abstractor I/O APIs are similar to ANSI I/O, you probably can use the third option so that you eliminate some performance overhead going through OS Abstractor I/O wrappers if necessary. But, it is always recommended that application use BASE OS Abstractor or POSIX APIs instead of directly using native API calls from OS libraries for maximum portability.

OS Abstractor External Memory Allocation

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

		Flag and Purpose

		Available options

		OS_USE_EXTERNAL_MALLOC

		OS_TRUE – OS abstractor can be configured to use an application defined external functions to allocate and free memory needed dynamically by the process. In this case, the OS Abstractor will use these function for allocating and freeing memory within OS_Allocate_Memory and OS_Deallocate_Memory functions These external functions needs to be similar to malloc() and free() and should be defined within osabstractor usr.h in order for OS Abstractor to successfully use them. This feature is useful if the application has it’s own memory management schemes far better than what the OS has to offer for dynamic allocations.

OS_FALSE – OS Abstractor will directly use the target OS system calls for allocating and freeing the memory

The default value is OS_FALSE

OS Abstractor Resource Configuration

In addition to OS Abstractor resources used by application, there may be some additional resources required internally by OS Abstractor. The configuration should take into the account of these additional resources while configuring the system requirements. All or any of the configuration parameters set in osabstractor usr.h config file can be altered by OS_Application_Init function (refer to Chapter 3, Functional Reference for OS_Application_Init function specification) as well.

The following are the OS Abstractor system resource configuration parameters:

		Flag and Purpose

		Default Setting

		OS_TOTAL_SYSTEM_PROCESSES

The total number of processes required by the application

		100

One control block will be used by the OS_Application_Init function when the INCLUDE_OS_PROCESS option is true

		OS_TOTAL_SYSTEM_TASKS

The total number of tasks required by the application

		100

One control block will be used by the OS_Application_Init function when the INCLUDE_OS_PROCESS option is true.

		OS_TOTAL_SYSTEM_PIPES

The total number of pipes for message passing required by the application

		100

		OS_TOTAL_SYSTEM_QUEUES

The total number of queues for message passing required by the application

		100

		OS_TOTAL_SYSTEM_MUTEXES

The total number of mutex semaphores required by the application

		100

		OS_TOTAL_SYSTEM_SEMAPHORES

The total number of regular (binary/count) semaphores required by the application

		100

		OS_TOTAL_SYSTEM_DM_POOLS

The total number of dynamic variable memory pools required by the application

		100

One control block will be used by the OS_Application_Init function when the INCLUDE_OS_PROCESS option is true.

		OS_TOTAL_SYSTEM_PM_POOLS

The total number of partitioned (fixed-size) memory pools required by the application

		100

		OS_TOTAL_SYSTEM_SM_POOLS

The total number of shared partitioned (fixed-size) memory pools required by the application

		100

		OS_TOTAL_SYSTEM_EV_GROUPS

The total number of event groups required by the application

		100

		OS_TOTAL_SYSTEM_TIMERS

The total number of application timers required by the application

		100

The following are the additional resources required internally by OS Abstractor:

		Resources

		Linux/Unix target

		VxWorks Target

		TASK

		· 1 Event Group required by BASE OS Abstractor

· 1 Event group required if application uses POSIX OS Abstractor and/or VxWorks OS Changer and/or pSOS OS Changer

		1 Event group required if application uses POSIX POSIX OS Abstractor and/or VxWorks OS Changer and/or pSOS OS Changer

		DM_POOL

		· 1 Event Group required by BASE OS Abstractor

		

		QUEUE

		· 2 Semaphores used by BASE OS Abstractor

· 1 Semaphore used by POSIX OS Abstractor

		1 Semaphore used by POSIX POSIX OS Abstractor

		MUTEX

		

		1 Semaphore used by BASE OS Abstractor

		PROCESS

		· 1 DM_POOL used by BASE OS Abstractor

		1 DM_POOL used by BASE OS Abstractor

		PM_POOL

		· 1 Semaphore is used by BASE OS Abstractor

		

		Posix Condition Variable

		· 1 Event Group required by POSIX OS Abstractor

		1 Event Group required by POSIX OS Abstractor

		Posix R/W Lock

		· 1 Event Group required by POSIX OS Abstractor

· 1 Semaphore required by POSIX OS Abstractor

		· 1 Event Group required by POSIX OS Abstractor

· 1 Semaphore required by POSIX OS Abstractor

If INCLUDE_OS_PROCESS feature is set to OS_FALSE, then the memory will be allocated from the individual application/process specific pool, which gets created during the OS_Application_Init function call.

If INCLUDE_OS_PROCESS is set to OS_TRUE, then the memory is allocated from a shared memory region to allow applications to communicate across multiple processes. Please note that in this case, the control block allocations cannot be done from the process specific dedicated memory pool since the control blocks are required to be shared across multiple applications.

For additional information related to memory definitions, please refer to Chapter 3, Functional Reference, section Process, and sub-section Memory.

OS Abstractor Minimum Memory Pool Block Configuration

		Flag and Purpose

		Default Setting

		OS_MIN_MEM_FROM_POOL

Minimum memory allocated by the malloc() and/or OS_Allocate_Memory() calls. This will be the memory allocated even when application requests a smaller memory size

		16 (bytes)

Note: Increasing this value further reduces memory fragmentation at the cost of more wasted memory.

OS Abstractor Application Shared Memory Configuration

		Flag and Purpose

		Default Setting

		OS_USER_SHARED_REGION1_SIZE

Application defined shared memory region usable across all process-based OS Abstractor and OS Changer processes/applications. Process-based applications are required to be built with OS_INCLUDE_PROCESS feature set to OS_TRUE

		1024 (bytes)

OS Abstractor includes this shared user region in the memory area immediately following all the OS Abstractor control block allocations. Applications can access the shared memory via the System_Config->user_shared_region1 global variable. Also, access to shared memory region must be protected (i.e. use mutex locks prior to read/write by the application).

NOTE: The actual virtual address of the shared memory may be different across processes/application; however the OS Abstractor initialized the System_Config pointer correctly during OS_Application_Init function call. Applications should not pass the shared memory region address pointer from one process to another since the virtual address pointing to the shared region may differ from process to process (instead use the above global variable defined above for shared memory region access from each process/applications).

OS Abstractor Clock Tick Configuration

		Flag and Purpose

		Default Setting

		OS_TIME_RESOLUTION

This will be the system clock ticks (not hardware clock tick).

For example, when you call OS_Task_Sleep(5), you are suspending task for a period
(5* OS_TIME_RESOLUTION).

See NOTES in this table.

		10000 second (= 10milli sec)

Normally this value is derived from the target OS. If you cannot derive the value then refer to the target OS reference manual and set the correct per clock tick value

		OS_DEFAULT_TSLICE

Default time slice scheduling window width among same priority pre-emptable threads when they are all in ready state.

		10

Number of system ticks. If system tick is 10ms, then the threads will be schedule round-robin at the rate of every 100ms.

Note: On Linux operating system, the time slice cannot be modified per thread. OS Abstractor ignores this setting and only uses the system default time slice configured for the Linux kernel.

Note: Time slice option is NOT supported under micro-ITRON.

Note: If the time slice value is non-zero, then under Linux the threads will use Round-Robin scheduling using the system default time slice value of Linux. If the Linux kernel support LINUX_ADV_REALTIME then the time slice value will be set accordingly.

Note: Since the system clock tick resolution may vary across different OS under different target. It is recommended that the application use the macro OS_TIME_TICK_PER_SEC to derive the timing requirement instead of using the raw system tick value in order to keep the application portable across multiple OS.

OS Abstractor Device I/O Configuration

		Flag and Purpose

		Default Setting

		NUM_DRIVERS

Maximum number of drivers allowed in the OS Abstractor driver table structure

		20

Note: This excludes the native drivers the system, since they do not use the OS Abstractor driver table structure.

		NUM_FILES

Maximum number of files that can be opened simultaneously using the OS Abstractor file control block structure.

		30

Note: One control block is used when an OS Abstractor driver is opened. This settings do not impact the OS setting for max number of files.

		EMAXPATH

Maximum length of the directory path name including the file name for OS Abstractor use excluding the null char termination

		255

Note: This setting does not impact the OS setting for the max path/file name.

OS Abstractor Target OS Specific Notes

Nucleus PLUS Target

The following is the compilations define that has to be set when building the Nucleus PLUS library in order for the OS Abstractor to perform correctly:

		Compilation Flag

		Meaning

		NU_DEBUG

		Regardless of the target you build, the OS Abstractor library always requires this flag to be set in order to be able to access OS internal data structures. Without this flag, you will see a lot of compiler errors.

Precise/MQX Target

The following are the compilation defines that has to be set if you are using Precise/MQX as your target OS:

		Compilation Flag

		Meaning

		MQX_TASK_DESTRUCTION

		Set this macro to zero to allow OS Abstractor to manage destruction of MQX kernel objects such as semaphores.

		BSP_DEFAULT_MAX_MSGPOOLS

		Set this macro to match the maximum number of message queues and pipes required by your application at a given time.

For example, if your application would need a max of 10 message queues and 10 pipes, then this macro needs to be set to 20.

The MQX_TASK_DESTRUCTION macro is located in source\include\mqx_cnfg.h in your MQX installation. Set it to zero as shown below (or pass it to compiler via pre-processor setting in your project make files):

#ifndef MQX_TASK_DESTRUCTION

#define MQX_TASK_DESTRUCTION 0

#endif

The BSP_DEFAULT_MAX_MSGPOOLS macro is located in source\bsp\bspname\bspname.h in your MQX installation, where bspname is the name of your BSP. Set the required value as follows:

#define BSP_DEFAULT_MAX_MSGPOOLS (20L)

Linux Target

User Vs ROOT Login

OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user is ROOT, then it will automatically utilize the Linux real time policies and priorities. It is always recommended that OS Abstractor application be run under ROOT user login. In this mode:

· OS Abstractor task priorities, time slice, pre-emption modes and critical region protection features will work properly.

· OS Abstractor applications will have better performance and be more deterministic behavior since the Linux scheduler is prevented to alter the tasks priorities behind the scenes.

· Also, when you load other Linux applications (that uses the default SCHED_OTHER policies), they will not impact the performance of the OS Abstractor applications that are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities and/or policies. It will use the SCHED_OTHER policy and will ignore the application request to set and/or change scheduler parameters like priority and such. OS Abstractor applications will run under the non-ROOT mode, with restrictions to the following OS Abstractor APIs:

· OS_Create_Task: The function parameters priority, timeslice and OS_NO_PREEMPT flag options are ignored

· OS_Set_Task_Priority: This function will have no effect and will be ignored

· OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT has no effect and will be ignored

· OS_Protect: Will offer NO critical region data protection and will be ignored. If you need protection, then utilize OS Abstractor mutex features

· OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher priority level that the OS Abstractor application tasks.

Though OS Abstractor applications may run under non-ROOT user mode, it is highly recommended that the real target applications be run under ROOT user mode.

Time Resolution

The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is retrieved from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means every tick equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be different under other real-time or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application needs if necessary. By default, this value is set for the time slice to be 100ms. If the Linux Advanced Real Time Feature is present (i.e the Linux kernel macro LINUX_ADV_REALTIME == 1), then OS Abstractor automatically takes advantage of this feature if present and uses the sched_rr_set_interval() function and sets the application required round-robin thread time-slice for the OB Abstractor thread. If this feature is not present, the the timeslice value for round-robin scheduling will be whatever the kernel is configured to.

Memory Heap

OS Abstractor uses the system heap directly to provide the dynamic variable memory allocation. The Memory management for the variable memory is best left for the Linux kernel to be handled, so OS Abstractor only does boundary checks to ensure that the application does not allocate beyond the pool size. The maximum memory the application can get from these pools will depend on the memory availability of the system heap.

Priority Mapping Scheme

The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in a total of 257 priorities. If the Linux that you use provides less than 257 priority values, then OS Abstractor maps its priority in a simple window-mapping scheme where a window of OS Abstractor priorities gets mapped to each individual Linux priority. If the Linux that you use provides more than 257 priority values, then the OS Abstractor maps it priority one-on-one somewhere in the middle of the range of Linux priorities. Please modify the priority scheme as necessary if required by your application. If you want to minimize the interruption of the external native Linux applications then you would want the OS Abstractor priorities to map to the higher end of the Linux priority window.

OS Abstractor priority value of 257 is reserved internally by OS Abstractor to provide the necessary exclusivity among the OS Abstractor tasks when they request no preemption or task protection. The exclusivity and protections are not guaranteed if the external native Linux application runs at a higher priority.

It is recommended that the Linux kernel be configured to have a priority of 512, so that the OS Abstractor priorities will use the window range in the middle and as such would not interfere with some of core Linux components. If your Linux kernel is configured to have less than 257 priorities, the OS Abstractor will automatically configuring a windowing scheme, where multiple number of OS Abstractor priorities will map to a single Linux priority. Because of this, the reported priority value could be slightly different than what was used during the task creating process. If your application uses the pre-processor called OS_DEBUG_INFO, then all the priority values and calculations will be printed to the standard output device.

Memory and System Resource Cleanup

OS Abstractor uses shared memory to support multiple OS Abstractor and OS Changer application processes that are built with OS_INCLUDE_PROCESS mode set to OS_TRUE.

Single-process Application Exit

This will apply to application that does not use the OS_PROCESS feature. Each application needs to call OS_Application_Free to unregister and free OS Abstractor resources used by the application. Under circumstances where the application terminates abnormally, the applications need to install appropriate signal handler and call OS_Application_Free within them.

Multi-process Application Exit

This will be the case where the applications are built with OS_PROCESS feature set to OS_TRUE. When the first multi-process application starts, shared memory is created to accommodate all the shared system resources for all the multi-process application. When subsequent multi-process application gets loaded, they will register and OS Abstractor will create all the local resources (memory heap) necessary for the application. Application’s can also spawn new applications using OS_Create_Process and will result the same as if a new application get’s loaded. Each application needs to call OS_Application_Free to unregister and free OS Abstractor resources used by the application. Under circumstances where the application terminates abnormally, the applications need to install appropriate signal handler and call OS_Application_Free within them. When the last application calls OS_Application_Free, then OS Abstractor frees the resources used by the application and also deletes the shared memory region.

 Manual Clean-up

If application terminates abnormally and for any reason and it was not possible to call OS_Application_Free, then it is recommended that you execute the provide cleanup.pl script manually before starting to load applications. Users can query the interprocess shared resources status by typing ipcs in the command line.

Multi-process Zombie Cleanup

There are circumstances where a multi-process application terminates abnormally and was not able to call OS_Application_Free. In this case, the shared memory region would be left with a zombie control block (i.e there is no native process associated with the OS Abstractor process control block). Whenever, a new multi-process application get’s loaded, OS Abstractor automatically checks the shared memory region for zombie control blocks. If it finds any, it will take the following action:

Free and initialize all the control blocks that belong to the zombie process (this could even be the zombie process of the same application currently being loaded but was previously terminated abnormally).

Task’s Stack Size

The stack size has to be greater than PTHREAD_STACK_MIN defined by Linux, otherwise, any OS Abstractor or OS Changer task creation will return success, but the actual task (pthread) will never get launched by the target OS. It is also safe to use a value greater than or equal to OS_MIN_STACK_SIZE defined in def.h. OS Abstractor ensures that OS_STACK_SIZE_MIN is always greater that the minimum stack size requirement set by the underlying target OS.

SMP Flags

The following is the compilation defines that can be set when building the OS Abstractor library for Linux SMP kernel target OS:

		Compilation Flag

		Meaning

		OS_BUILD_FOR_SMP

Support for Symmetric Multi-Processors (SMP)

		Specify the SMP or non-SMP kernel. The value can be:

OS_TRUE SMP enabled

OS_FALSE SMP disabled

Windows Target

OS_Relinquish_Task API uses Window’s sleep() to relinquish task control. However, the sleep() function does not relinquish control when stepping through code in the debugger, but behaves correctly when executed. This is a problem inherent in the OS itself.

QNX Target

User Vs ROOT Login

OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user is ROOT, then it will automatically utilize the Linux real time policies and priorities. It is always recommended that OS Abstractor application be run under ROOT user login. In this mode:

· OS Abstractor task priorities, time slice, pre-emption modes and critical region protection features will work properly.

· OS Abstractor applications will have better performance and be more deterministic behavior since the Linux scheduler is prevented to alter the tasks priorities behind the scenes.

· Also, when you load other Linux applications (that uses the default SCHED_OTHER policies), they will not impact the performance of the OS Abstractor applications that are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities and/or policies. It will use the SCHED_OTHER policy and will ignore the application request to set and/or change scheduler parameters like priority and such. OS Abstractor applications will run under the non-ROOT mode, with restrictions to the following OS Abstractor APIs:

· OS_Create_Task: The function parameters priority, timeslice and OS_NO_PREEMPT flag options are ignored

· OS_Set_Task_Priority: This function will have no effect and will be ignored

· OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT has no effect and will be ignored

· OS_Protect: Will offer NO critical region data protection and will be ignored. If you need protection, then utilize OS Abstractor mutex features

· OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher priority level that the OS Abstractor application tasks.

Though OS Abstractor applications may run under non-ROOT user mode, it is highly recommended that the real target applications be run under ROOT user mode.

Time Resolution

The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is retrieved from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means every tick equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be different under other real-time or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application needs if necessary. By default, this value is set for the time slice to be 100ms.

Memory Heap

OS Abstractor uses the system heap directly to provide the dynamic variable memory allocation. The Memory management for the variable memory is best left for the Linux kernel to be handled, so OS Abstractor only does boundary checks to ensure that the application does not allocate beyond the pool size. The maximum memory the application can get from these pools will depend on the memory availability of the system heap.

Priority Mapping Scheme

QNX native priority value of 255 will be reserved for OS Abstractor Exclusivity. The rest of the 255 QNX priorities will be mapped as follows:

0 to 253 OS Abstractor priorities -> 254 to 1 QNX priorities

254 and 255 OS Abstractor priorities -> 0 QNX priority

The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in a total of 257.

Memory and System Resource Cleanup

Please refer to the same section under target specific notes for Linux operating system.

Task’s Stack Size

The stack size has to be greater than PTHREAD_STACK_MIN defined by Linux, otherwise, any OS Abstractor or OS Changer task creation will return success, but the actual task (pthread) will never get launched by the target OS. It is also safe to use a value greater than or equal to OS_STACK_SIZE_MIN defined in def.h. OS Abstractor ensures that OS_STACK_SIZE_MIN is always greater that the minimum stack size requirement set by the underlying target OS.

VxWorks Target

Version Flags

The following is the compilation defines that has to be set when building the OS Abstractor library for VxWorks target OS:

		Compilation Flag

		Meaning

		OS_VERSIONxe “NU_ENABLE_HISTORY”

		Specify the VxWorks version. The value can be:

OS_VXWORKS_5X – VxWorks 5.x or older

OS_VXWORKS_6X – Versions 6.x or higher

		OS_KERNEL_MODE

		Set this value to OS_TRUE if the OS Abstractor is required to run as a kernel module.

Under OS_VXWORKS_5X, the OS_KERNEL_MODE flag is ignored. The library is built to run as a kernel module.

Under OS_VXWORKS_6X, you have the option to create the library for either as a kernel module or a user application as below:

OS_KERNEL_MODE = OS_TRUE for kernel module

OS_KERNEL_MODE = OS_FALSE for user application.

Unsupported OS Abstractor APIs

The following OS Abstractor APIs are not supported as shown below:

		Compilation Flag

		Unsupported APIs

		OS_VERSION = OS_VXWORKS_5Xxe “NU_ENABLE_HISTORY”

		OS_Delete_Partion_Pool

OS_Delete_Memory_Pool

OS_Get_Semaphore_Count

		OS_VERSION = OS_VXWORKS_6X and

OS_KERNEL_MODE = OS_TRUE

		OS_Set_Clock_Ticks

		OS_VERSION = OS_VXWORKS_6X and

OS_KERNEL_MODE = OS_FALSE

		OS_Get_Semaphore_Count

 Application Initialization

Once you have configured the OS Abstractor (refer to chapter OS Abstractor Configuration), now you are ready to create a sample demo application.

Application needs to initialize the OS Abstractor library by calling the OS_Application_Init() function prior to using any of the OS Abstractor function calls. Please refer to subsequent pages for more info on the usage and definition of OS_Application_Init function.

The next step would be is to create the first task and then within the new task context, application needs to call other initializations functions if required. For example, to use the POSIX OS Abstractor component, application need to call OS_Posix_Init() function within an OS Abstractor task context prior to using the POSIX APIs. The OS_Posix_Init() function initializes the POSIX library and makes a function call to px_main() function pointer that is passed along within OS_Posix_Init() call. Please note that the px_main() function is similar to the main() function that is typically found in posix code. Please refer to the example initialization code shown at the end of this section.

If the application also uses OS Changer components, then the appropriate OS Changer library initialization calls need to be made in addition to POSIX initialization. Please refer to the appropriate OS Changer reference manual for more details.

Please refer to the init.c module provided with the sample demo application for the specific OS, tools and target for OS Abstractor initialization and on starting the application.

If you need to re-configure your board differently or would like to use a custom board, or would like to re-configure the OS directly, then refer to the appropriate documentations provided by the OS vendor.

Example: BASE OS Abstractor for Windows Initialization

int main(int argc,

 LPSTR argv[])

{

 OS_Main();

 return (OS_SUCCESS);

} /* main */

VOID OS_Main()

{

 OS_TASK task;

 OS_APP_INIT_INFO info;

 /* set the OS_APP_INIT_INFO structure with the actual number of resources we will use. If we set all the Variables to -1, the default values would be used. On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO structure with at least first_available set to the first unused memory. Other OS's can pass NULL to OS_Application_Init and all defaults would be used. */

#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))

 info.first_available = first_unused_memory; /* required for ThreadX */

#endif

 info.debug_info = OS_DEBUG_VERBOSE;

 info.task_pool_enabled = OS_TRUE;

 info.task_pool_timeslice = -1;

 info.task_pool_timeout = -1;

 info.root_process_preempt = -1;

 info.root_process_priority = -1;

 info.root_process_stack_size = -1;

 info.root_process_heap_size = -1;

 info.default_timeslice = -1;

 info.max_tasks = 6;

 info.max_timers = 3;

 info.max_mutexes = 0;

 info.max_pipes = 1;

#if (INCLUDE_OS_PROCESS == OS_TRUE)

 info.max_processes = 2;

#else

 info.max_processes = 0;

#endif

 info.max_queues = 1;

 info.user_shared_region1_size = 0;

 info.max_partition_mem_pools = 0;

 info.max_dynamic_mem_pools = 1;

 info.max_event_groups = 2;

 info.max_semaphores = 1;

 OS_Application_Init("DEMO", HEAP_SIZE, &info);

 OS_Create_Task(&task,

 "APPSTART",

 OS_Application_Start,

 0,

 STACK_SIZE,

 1,

 0,

 OS_NO_PREEMPT | OS_START);

 OS_Application_Wait_For_End();

} /* OS_Main */

VOID OS_Application_Start(UNSIGNED argv)

{

/*User application code*/

}

Example: POSIX OS Abstractor for Windows Target Initialization

int main(int argc,

 LPSTR argv[])

{

 OS_Main();

 return (OS_SUCCESS);

} /* main */

VOID OS_Main()

{

 OS_TASK task;

 OS_APP_INIT_INFO info;

 /* set the OS_APP_INIT_INFO structure with the actual

 * number of resources we will use. If we set all the

 * variables to -1, the default values would be used.

 * On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO

 * structure with at least first_available set to the first

 * unused memory. Other OS's can pass NULL to OS_Application_Init

 * and all defaults would be used */

#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))

 info.first_available = first_unused_memory; /* required for ThreadX */

#endif

 info.debug_info = OS_DEBUG_VERBOSE;

 info.task_pool_enabled = OS_TRUE;

 info.task_pool_timeslice = -1;

 info.task_pool_timeout = -1;

 info.root_process_preempt = -1;

 info.root_process_priority = -1;

 info.root_process_stack_size = -1;

 info.root_process_heap_size = -1;

 info.default_timeslice = -1;

 info.max_tasks = 6;

 info.max_timers = 3;

 info.max_mutexes = 0;

 info.max_pipes = 1;

#if (INCLUDE_OS_PROCESS == OS_TRUE)

 info.max_processes = 2;

#else

 info.max_processes = 0;

#endif

 info.max_queues = 1;

 info.user_shared_region1_size = 0;

 info.max_partition_mem_pools = 0;

 info.max_dynamic_mem_pools = 1;

 info.max_event_groups = 2;

 info.max_semaphores = 1;

 OS_Application_Init("DEMO", HEAP_SIZE, &info);

 OS_Create_Task(&task,

 "APPSTART",

 OS_Application_Start,

 0,

 STACK_SIZE,

 1,

 0,

 OS_NO_PREEMPT | OS_START);

 OS_Application_Wait_For_End();

} /* OS_Main */

VOID OS_Application_Start(UNSIGNED argv)

{

 pthread_t task;

/* posix compatibility initialization. create the main process

 * and pass in the osc posix main entry function px_main.*/

 OS_Posix_Init();

 pthread_create(&task, NULL, (void*)px_main, NULL);

 pthread_join(task, NULL);

 OS_Application_Free(OS_APP_FREE_EXIT);

} /* OS_Application_Start */

int px_main(int argc,

 char* argv[])

{

/*User application code*/

}

‘

Runtime Memory Allocations

OS Abstractor

Some of the allocations for this product will be dependant on the native os. Some of these may be generic among all products. The thread stacks should come from the process heap. This is only being done on the OS Abstractor for QNX product at the moment.

· Message in int_os_send_to_pipe.

· Device name in os_creat

· Partitions in os_create_partition_pool

· Device name in os_device_add

· File structures in os_init_io

· Driver structures in os_init_io

· Device header for null device in os_init_io

· Device name for the null device in os_init_io

· Device name in os_open

· Environment structure in os_put_environment

· Environment variable in os_put_environment

· Memory for profiler messages if profiler feature is turned ON

· Thread stack (only under QNX)

POSIX OS Abstractor

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus, all these allocations come from the calling processes memory pool:

· Pthread key lists and values

· Stack item in pthread_cleanup_push

· Sem_t structures created by sem_open.

· Timer_t structures created by timer_create.

· mqueue_t structures created by mq_open.

· Message in mq_receive. This is deallocated before leaving the function call.

· Message in mq_send. This is deallocated before leaving the function call.

· Message in mq_timedreceive. This is deallocated before leaving the function call.

· Message in mq_timedsend. This is deallocated before leaving the function call.

All of the following are specific to the TKernel OS and use the SMalloc api call. These will not be accounted for in the process memory pool:

· Parameter list for execve

· INT_PX_FIFO_DATA structure in fopen

All of the following are specific to the TKernel OS and use os_malloc_external API call. These will not be accounted for in the process memory pool.

· Buffer for getline

· Globlink structure in int_os_glob_in_dir

· Globlink name in int_os_glob_in_dir

· Directory in int_o_prepend_dir

micro-ITRON OS Abstractor

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus, all these allocations come from the calling processes memory pool.

· Message in snd_dtq. This is deallocated before leaving the function call.

· Message in psnd_dtq. This is deallocated before leaving the function call.

· Message in tsnd_dtq. This is deallocated before leaving the function call.

· Message in fsnd_dtq. This is deallocated before leaving the function call.

· Message in rcv_dtq. This is deallocated before leaving the function call.

· Message in prcv_dtq. This is deallocated before leaving the function call.

· Message in trcv_dtq. This is deallocated before leaving the function call.

· Message in snd_mbf. This is deallocated before leaving the function call.

· Message in psnd_mbf. This is deallocated before leaving the function call.

· Message in tsnd_mbf. This is deallocated before leaving the function call.

· Message in rcv_mbf. This is deallocated before leaving the function call.

· Message in prcv_mbf. This is deallocated before leaving the function call.

· Message in trcv_mbf. This is deallocated before leaving the function call.

OS Changer VxWorks

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus, all these allocations come from the calling processes memory pool.

· Wdcreate allocates memory for an OS_TIMER control block .

· Message in msgqsend. This is deallocated before leaving the function call.

· Message in msgqreceive. This is deallocated before leaving the function call

OS Changer pSOS

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus, all these allocations come from the calling processes memory pool.

· Rn_getseg will allocate from the System_Memory if a pool is not specified.

· Message in q_vsend. This is deallocated before leaving the function call.

· Message in q_vrecieve. This is deallocated before leaving the function call.

· Message in q_vurgent. This is deallocated before leaving the function call.

All of the following allocations use malloc. Depending on the setting of OS_MAP_ANSI_MEM these may or may not be accounted for in the process memory pool.

· IOPARMS structure in de_close

· IOPARMS structure in de_cntrl

· IOPARMS structure in de_init

· IOPARMS structure in de_open

· IOPARMS structure in de_read

OS Changer Nucleus

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus, all these allocations come from the calling processes memory pool.

· Message in nu_receive_from_pipe. This is deallocated before leaving the function call

· Message in nu_receive_from_queue. This is deallocated before leaving the function call

· Message in nu_send_to_front_of_pipe. This is deallocated before leaving the function call

· Message in nu_send_to_front_of_queue. This is deallocated before leaving the function call

· Message in nu_send_to_pipe. This is deallocated before leaving the function call

· Message in nu_send_to_queue. This is deallocated before leaving the function call

OS Abstractor Process Feature

An OS Abstractor process or an application (“process”) is an individual module that contains one or more tasks and other resources. A process can be looked as a container that provides encapsulation from other process. The OS Abstractor processes only have a peer-to-peer relationship (and not a parent/child relationship).

An OS Abstractor process comes into existence in two different ways. Application registers a new OS Abstractor process when it calls OS_Application_Init function. Application also launches a new process when it calls the OS_Create_Process function. In the later case, the newly launched process does not automatically inherit the open handles and such; however they can access the resources belonging to the other process if they are created with “system” scope.

Under process-based operating system like Linux, this will be an actual process with virtual memory addressing. As such the level of protection across individual application will be dependent on the underlying target OS itself.

Under non-process-based operating system like Nucleus PLUS, a process will be a specialized task (similar to a main() thread) owning other tasks and resources in a single memory model based addressing. The resources are protected via OS Abstractor software. This protection offered by OS Abstractor is software protection only and not to be confused with MMU hardware protection in this case.

OS Abstractor automatically tracks all the resources (tasks, threads, semaphores, etc.) and associates them with the process that created them. All the memory requirements come from its own process dedicated memory pool called “process system pool”. Upon deletion of the process, all these resources will automatically become freed.

Depending on whether the resource needs to be shared across other processes, they can be created with a scope of either OS_SCOPE_SYSTEM or OS_SCOPE_PROCESS. The resources with system scope can be accessible or usable by the other processes. However, the process that creates them can only do deletion of these resources with system scope.

A new process will be created as a “new entity” and not a copy of the original. As such, none of the resources that are open becomes immediately available to the newly created process. The new created process can use the resources which were created with system scope by first retrieving their ID through their name. For this purpose, the application should create the resources with unique names. OS Abstractor will all resource creation with duplicate names, however the function that returns the resource ID from name will provide the ID of only the first entry.

Direct access to any OS Abstractor resource control blocks are prohibited by the application. In other words, the resource Ids does not directly point to the addresses of the control blocks.

Simple (single-process) Versus Complex (multiple-process) Applications

An OS Abstractor application can be simple (i.e. single-process application) or complex (multi-process application). Complex and large applications will greatly benefit in using the OS_INCLUDE_PROCESS feature support offered by OS Abstractor.

		OS_INCLUDE_PROCESS = OS_FALSE

(Simple OR Single-process Application)

		OS_INCLUDE_PROCESS = OS_TRUE

(Complex OR multi-process Application)

		OS Abstractor applications are independent from each other and are complied and linked into a separate executables. There is no need for the OS Abstractor and/or OS Changer APIs to work across processes.

		OS Abstractor applications can share the OS Abstractor resources (as long as they are created with system scope) between them even though they may be complied and linked separately. The OS Abstractor and/or OS Changer APIs works across processes.

		Many independent or even clones of OS Abstractor single-process applications can be hosted on the OS platform.

		In addition to independent single-process applications, the current release of OS Abstractor allows to host one multi-process application.

		OS Abstractor applications do NOT spawn new processes via the OS_Create_Process function. In fact, any APIs with the name “process” in them are not available for a single-process application.

		OS Abstractor applications can spawn new processes via the OS_Create_Process function.

		Each application uses its own user configuration parameters set in the osabstractor usr.h file.

		Each application has to have the same set of shared resources defined in the osabstractor_usr.h (e.g. max number of tasks/threads across all multi-process applications). When the first multi-process application gets loaded, the OS Abstractor uses the values defined in osabstractor_usr.h or the over-ride values passed along its call to OS_Application_Init function to create all the shared system resources. When subsequent multi-process application gets loaded, OS Abstractor ignores the values defined in the osabstractor_usr.h or the values passed in the OS_Application_Init call. Please note that the shared resources are only gets created during the load time of the first application and they gets deleted when the last multi-process application exits.

		OS Abstractor creates all the resource control blocks within the process memory individually for each application.

		OS Abstractor creates all the resource control blocks in shared memory during the first OS_Application_Init function call. In other words, when the first application gets loaded, it will initialize the OS Abstractor library. After this, every subsequent OS_Application_Init call will register and adds the application as a new OS Abstractor process and also creates the memory pool for the requested heap memory.

An application can delete or free or re-start itself with a call to OS_Application_Free. An application can delete or re-start another application via OS_Delete_Process.

Also, it is up to the application to provide the necessary synchronization during loading individual applications so that the complex application will start to run only in the preferred sequence.

Memory Usage

The memory usage depends on whether your application is built in single process mode (i.e OS_INCLUDE_PROCESS set to false) or multi-processes mode (i.e OS_INCLUDE_PROCESS set to true).

The memory usage also depends on whether the target OS supports single memory model or a virtual memory model. Operating systems such as LynxOS, Linux, Windows XP, etc. are based on virtual memory model where each application are protected from each other and run under their own virtual memory address space. Operating systems like Nucleus PLUS, ThreadX, MQX, etc. are based on single memory model where each application shares the same address space and there is no protection from each other.

In general, OS Abstractor applications require memory to store the system configuration and also to meet the application heap memory needs.

Memory Usage under Virtual memory model based OS

Multi-process Application

System_Config: The system config structure will be allocated from shared memory. The size will be returned to the user for informational use via the OS_SYSTEM_OVERHEAD macro.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the heap size for this particular process. In this type of system, it is possible to have multiple applications, all of which will call this api. This api will create an OS Abstractor dynamic memory pool the size of the heap. The global variable System_Memory will be set to the id of this pool.

OS_Create_Process: The memory value passed into this API by process_pool_size will be the heap size for this particular process. This api will create an OS Abstractor dynamic memory pool the size of the heap. The global variable System_Memory will be set to the id of this pool.

System_Memory: This will be set to the pool id of the process memory pool.

[image: image4.png]

Single-process Application

System_Config: The system config structure will be allocated from the process heap. The size will be returned to the user for informational use only by calling OS_System_Overhead();

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the amount of memory available to the system. This api will create an OS Abstractor dynamic memory pool this size. The memory for System_Config does not come from this pool. So the total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will be set to 0. Since there are no processes, the first pool will always be the system memory pool.

[image: image5.png]

Native process heap size: We are not adjusting the native process heap size, so it could be possible that there is an inconsistency between the amount of memory reserved by OS Abstractor and the amount of memory reserved for the actual heap of the native process.

There is no upper bounds limit to the system wide memory use while in process mode. We will create processes without regard to the actual size of the physical memory.

Memory Usage under Single memory model based OS

Multi-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and will be adjusted the size of the system_config structure.

OS_Application_Init: The memory value passed into this API by memory_pool_size will be the heap size for this particular process. This api can only be called once since it is not possible to have multiple applications natively. This api will create an OS Abstractor dynamic memory pool the size of the heap.

OS_Create_Process: The memory value passed into this API by process_pool_size will be the heap size for this particular process. This api will create an OS Abstractor dynamic memory pool the size of the heap.

System_Memory: This will always be set to 0. When we get a pool id of 0 in any of the allocation apis we will know to allocate from the current process memory pool. This means that the dynamic memory pool control block at index 0 is not to be used.

[image: image6.png]

Single-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and will be adjusted the size of the system_config structure.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the amount of memory available to the system. This api will create an OS Abstractor dynamic memory pool this size. The memory for System_Config does not come from this pool. So the total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will always be set to 0. Since we are not in process mode, there should not be any other OS Abstractor memory pools created.

[image: image7.png]

There is no upper bounds limit to the system wide memory use while in process mode. Also, it cannot be guaranteed that there will be enough memory to create all the processes of the application since there is no total memory being reserved.

POSIX OS Abstractor Configuration

When the INCLUDE_OS_POSIX option is set to OS_TRUE, the OS Abstractor also includes POSIX APIs in addition to the BASE OS Abstractor APIs available to the application.

Inclusion of osabstractor.h will ensure that all the POSIX API calls in the application are automatically re-mapped to OS Abstractor libraries. Applications can also selectively exclude individual modules of POSIX OS Abstractor APIs, if required.

Current release does not support including or excluding Individual modules within POSIX OS Abstractor.

Porting POSIX Legacy Code with OS Abstractor

The first step in porting any POSIX legacy code base using POSIX OS Abstractor component would be to rename the application main() function to px_main(). Then this function can be started via the OS_Posix_Init() call. Please refer to the list of POSIX APIs that are supported by the POSIX OS Abstractor component. If the application requires a specific POSIX function which is not support by OS Abstractor, then there are two options:

1. Re-write the application with BASE OS Abstractor function calls for all the unsupported POSIX APIs needed by your application.

2. Check if the target OS offers support to this function and if so, you can directly use those functions (however, in this case, the OS Abstraction will not be there). In this case, make sure you include all the relevant POSIX header files provided by the target OS before including osabstractor.h. This way, the POSIX calls used by the application will get mapped to the POSIX equivalent calls from the OS Abstractor library.

If applications need to use the POSIX APIs offered by the target OS (or) tools in addition to what is offered with POSIX OS Abstractor, then you need to do it by including additional POSIX header files provided by the target OS. However, these headers files are required to be included prior to osabstractor.h within the application source code.

 POSIX OS Abstractor – API Deviations

POSIX API available on some selected OS and also support for new APIs are constantly added in newer releases.

· Contact MapuSoft to find out the latest POSIX API support for your target OS platform.

· Refer to the POSIX standards reference documents for the specifications for all the above POSIX APIs.

Note: Extensive POSIX level and other standard’s compliance is provided on VxWorks 6.x OS platform. Additional POSIX support is available on T-Kernel platform

Chapter 6. OS Changer Porting Examples

This chapter contains the following topics:

Sample Porting of pSOS Application to Linux with OS Changer

Sample Porting of VxWorks Application with OS Changer using OSPAL

Sample Porting of pSOS Application to Linux with OS Changer

In most applications, using OS Changer is straightforward. The effort required in porting is mostly at the underlying driver layer. Since we do not have specific information about your application, it will be hard to tell how much work is required. However, we want you to be fully aware of the surrounding issues upfront so that necessary steps could be taken for a successful and timely porting.

This section provides porting guidelines in two different flow charts. Contact MapuSoft Technologies for further information on your application specific issues.

Chart A covers issues relating with OS Changer, device drivers, interrupt service routines, etc.

[image: image8.wmf]Porting pSOS

TM

Applications to LINUX - Guidelines

Chart A - Kernel APIs, interrupts and device drivers

Yes

START

No

Yes

CHECK 1

Does your application uses any pSOS kernel

APIs' that are not supported by

OSCHANGER?

Go To Chart B

Implement the

unsupported APIs

using LINUX

No

Yes

CHECK 2

Does your application uses any pSOS APIs'

provided by OSCHANGER that are little

different from the original APIs?

Modify your

application to

handle the

differences

No

Yes

CHECK 4

Does your application configure the target

hardware differently than what was validated

by the new RTOS you have chosen?

Modify the port specific

code or BSP to make it

work for your board. It is

highly recommended

toget a native demo

application running on

your target prior to

porting

No

Yes

CHECK 5

Are you using pSOS based device drivers?

Use device wrapper functions

to interact with the driver to

minimize changes to

application. Port the pSOS

device driver to Linux

CHECK 3

Does your application require call-out routines

functions provided by pSOS kernel?

Modify OSCHANGER

and/or implement them

using Linux alternatives

No

No

Yes

CHECK 6

Are you using interrupt service routines that

are unaware to or unmanaged by pSOS?

Port them to work under

Linux

Chart B covers issues relating to other add-on components (like pHILE) that application may use.

[image: image9.wmf]START

No

Yes

CHECK 1

Does your application uses pNA+ networking

component provided by pSOS?

HAPPY PORTING

Port API interfaces

and drivers to

Linux via using

BSD socket

interface APIs. If

you prefer to use a

third party stack for

any reason, then

make sure it will

work under Linux

No

Yes

CHECK 2

Does your application uses pHILE file

management APIs provided by pSOS?

Port API interfaces

and drivers to

Linux

No

Yes

CHECK 3

Does your application uses OpTIC graphics

APIs provided by pSOS?

Port API interfaces

and drivers to

native or third party

graphics product

No

Yes

CHECK 4

Does your application uses pREPC+ library

APIs provided by pSOS?

Utilize the CLIB provided by Linux. Check

to make sure the CLIB APIs you use are

re-entrant for your multi-tasking

environment

Porting pSOS

TM

Applications to Linux - Guidelines

Chart B - Other Components

OS Changer Overview

The OS Changer contains the following modules, which can be found at the installation directory:

		Module

		Description

		oschanger.h

		This header files include RTOS specific components and also components that is required for the application

		ps_oschanger\PS_oschanger.h

		This header file provides the translation layer between the pSOS™ defines, APIs and parameters to OS Changer’s virtual abstraction definition, which then re-maps to Linux equivalents

		ps_oschanger\PS_i.c

		Provides the pSOS OS Changer initialize function

		ps_oschanger\PS_as.c

		Provides pSOS™ signal handling APIs

		ps_oschanger\PS_ev.c

		Provides pSOS™ event handling APIs

		ps_oschanger\PS_t.c

		Provides pSOS™ task handling APIs

		ps_oschanger\PS_pt.c

		Provides pSOS™ partition memory management APIs

		ps_oschanger\PS_rN.c

		Provides pSOS™ memory region management APIs

		ps_oschanger\PS_q.c

		Provides pSOS™ fixed and variable queue APIs

		ps_oschanger\PS_sm.c

		Provides pSOS™ semaphore handling APIs

		ps_oschanger\PS_tm.c

		Provides pSOS™ timer, time and date APIs

		ps_oschanger\PS_DE.C

		Provides pSOS™ of device and driver APIs

		osc_LX\osc_ll.c

		Provides link list manipulation

		OSC_lx\OSC_LX.h

		OSC to Linux compile time mapping module

		OSC_lx\OSC_LX.c

		OSC to Linux function mapping module

		OSC_LX\OSC_LX_init.c

		OS initialization to start application - function main()

User configurable module.

		OSC_NU\OSC_LX_usr.c

		Configure fatal error handler rountines to your needs

		demo\ps_oschanger\ps_LX_init.c

		User configurable Linux initialization module

User condigurable module.

		demo\ps_oschanger\ps_demo.c

		Sample pSOS demo application that runs on Linux

		demo\ps_oschanger\ps_dvserial.c

		Sample pSOS device driver code

		demo\ps_oschanger\ps_usr.c

		User configurable module to setup pSOS drivers’ init configurations.

NOTE: Install OS Changer in the root file system (Rfs) under the folder called ‘opt’, in a directory called ‘mapusoft’. Please be aware that the Rfs path location would be different depending on if you are working or doing a cross-compiling.

About pSOS OS Changer

OS Changer makes it easy to transition applications developed using pSOS™ kernel APIs to the Linux operating system. This product comes in the form of a library providing support for pSOS™ kernel APIs integrated and optimized for Linux operating system.

Porting is done in the following three steps:

· Remove references to the pSOS™ header files and the pSOS™ configuration tables within your application.

· Set pre-processor defines to indicate OS selection and also the OS Changer APIs that you require to use

· Include the Linux and OS Changer libraries and insert oschanger.h in your application.

· Compile, link and download your application to the target. Resolve compiler or linker or run-time errors as appropriate

NOTE: The pSOS™ APIs have gone through very little change over the past years and as a result this product should work with all pSOS™ versions. We also support older versions of pSOS APIs, so please contact MapuSoft for further help.

OS Changer and Linux OS Integration

The library mostly uses POSIX API functions and may accesses Linux OS’s internal data structures to provide you further optimization under selected Linux Distribution. OS Changer may also be integrated with selected Linux vendors tools and IDE to provide you a out-of-the box solution. Some of the pSOS kernel APIs may be using more than one or more Linux equivalent APIs in order to provide the required pSOS API support. The OS Changer should work with all the versions of Linux that support POSIX 1003.1a, 1003.1b, and 1003.1c API compliance in the field because there were no specific changes are required or made to the underlying Linux product

How to Use pSOS OS Changertc "How to Use Nucleus PLUS"

OS Changer is designed for use as a C library. Services used inside your application software are extracted from the OS Changer and Linux libraries, and, are then combined with the other application objects to produce the complete image. This image may be downloaded to the target system or placed in ROM on the target system. Please refer to appropriate documentation for help with compiling, debugging and downloading your application to target.

The steps for using OS Changer are described in the following generic form:

· Remove the pSOS™ header file include defines from all your source files.

· Remove definitions and references to all the pSOS™ configuration data structures in your application.

· Include the OS Changer header file oschanger.h in all of the source files.

· In your project make file, define the RTOS for Linux, if you are using advanced real-time options of Linux, the appropriate compiler tool environment if required and other pre-processor options to build the OS Changer libraries and your application.

· Under Linux, the OSC_Application_Startxe "Application_Initialize" function will be your main() routine. This function calls ps_Initialize which creates the pSOS root task. If some things need to be done for your application prior to root task creation, then place those codes between OSC_RTOS_Init and ps_Initialize functions.

· Modify the Linux BSPs to match with your development board configurations (see appropriate Linux documentation).

· Customize the priority mapping if necessary within OSC_RTOS_Init function. OS Changer does an automatic mapping of the required 257 priorities to Linux somewhere in the middle of Native Linux’s lowest and highest priorities.

· Resolve the compiler and linker errors.

· Download the complete application image to the target system and resolve all the OS Changer generated run-time errors.

Please review the processor and development system documentation for additional information, including specific details on how to use the compiler, assembler, and linker. Please refer to the underlying Linux documentation to make the necessary changes to the BSP.

It is recommended that you first bring up the standard OS demo application provided by the Linux product for your target first, prior to trying out porting applications via OS Changer.

OS Changer is designed to be independent of the underlying hardware and operating system itself. It does not contain any assembly code. If you need any specific features of pSOS functions that is required but not provided by the standar OS Changer release, please contact MapuSoft Technologies. In most cases, we will be able to provide an easy work-around or may have an updated release covering those required functionalities.

OS Changer Library Initialization

After, Linux initializes itself, your applications main() entry point is mapped directly to OS Changer’s OSC_Application_Start function where you will initialize your application if required. This function also provides a memory pointer for application’s run time memory needs. But under Linux OS, since all OS Changer’s and applications memory requirement are directly derived from the system heap, so you can safely ignore this parameter. There are four steps needed to be performed within the OSC_Application_Start() function located in ps_LX_init.c file module prior to using any of the OS Changer libraries:

1. Intialize OS Changer RTOS specific library by calling the OSC_RTOS_Init()

2. Insert any application specific code if necessary, before the root task get’s spawned

3. Initialize the OS Changer pSOS library by calling ps_Initialize().

4. Just Idle or sleep so that your linux program will not exit.

#include “oschanger.h” /* remove psos header file includes and use oschanger.h */

void Function_Root(UNSIGNED); /* root task – prototype definition */

ulong tRoot; /* Define the Root Task ID, this is initialized in ps_initialize func */

void OSC_Application_Start(VOID *first_available_memory)

{

OSC_RTOS_Init();

/* insert your code here !!!! */

/* OS Changer psos library initialzation and root task creation */

ps_Initialize(STACK_SIZE, &tRoot, Function_Root);

for(;;)

 OSC_Sleep_Task(10000); /* just Idle here, after starting root,

 Otherwise your program will EXIT !!! */

}

When there is a fatal system error and the pre-processor flag OSC_DEBUG is set, the execution will stop inside the OSC_Fatal_Error function define in osc_lx\osc_lx_usr.c file. To handle the error differently, insert your code within OSC_Fatal_Error.

Device Drivers Initialization

The device drivers and the interrupt service routines needed to be ported to work under Linux. OS Changer provides the necessary application level API interface via the functions like de_init, de_open, and others. For each device that you access via the de_xxx interface, you will need to provide corresponding wrapper device driver routines for that device. The functions SetUpDrivers (see ps_usr.c module) will setup and install your driver. Setup installs the driver by calling InstallDriver along with providing required wrapper function pointers of the device specific routines. Within the wrapper rountines, use the device I/O routines to connect to the device and upon return, you can provide the driver response in the form how the application expects. This will greatly minimize changes to the application interacting with the Linux devices. When adding a driver, there are three steps:

Modify ps_oschanger.h to add the unique device ID with device major & minor values set accordingly.

Note: The device major ID cannot exceed the define SC_DEVMAX value.

If you need more drivers, then modify the SC_DEVMAX value accordingly. Code sample given below (refer to ps_oschanger.h also) adds device DEV_SERIAL_DEMO_DRV with the major number defined as SC_DEV_SERIAL_DEMO_DRV (equals to value 14, which is less than SC_DEVMAX) to the I/O system.

/* Device major ID value defined below */
#define SC_DEV_SERIAL_DEMO_DRV 14 /* major number */

/* Device unique ID (major ID value = 14; minor ID value = 0).

Note that the major value is the most significant 16bits and minor value is the least significant 16bits */

#define DEV_SERIAL_DEMO_DRV (SC_DEV_SERIAL_DEMO_DRV << 16)

Modify the SetUpDriver to install and setup the device driver. See code sample below:

/* Install the DEMO SERIAL DRIVER */

/* Make sure you’re the major value of the device ID does not exceed the dev max value */

 #if(SC_DEV_SERIAL_DEMO_DRV > SC_DEVMAX)

 #error "SC_DEV_SERIAL_DEMO_DRV cannot be > SC_DEVMAX"

 #endif

/* sample installation and setup for the serial driver */

InstallDriver(SC_DEV_SERIAL_DEMO_DRV, DevSerialInit, DevSerialOpen,

 DevSerialClose, DevSerialRead, DevSerialWrite,

 DevSerialCntrl, 0, 0);

Develop your device specific routines. See dvserial.c module in the demo directory for sample device specific routines. Every device specific routine should return two values (errcode and retval) to the de_xxxx api interface as shown below prior to their function return:
/* set driver return value */

iopb->out_retval = 0;

iopb->err = EOK;

NOTE: Please note that the return values are returned differently unlike how it pSOS does it. In pSOS, the return values are normally set in specific registers instead of how it is done above for OS Changer. However, this is much more convenient way since we are not reading writing to registers via assembly code.

Linux Time and Clock Initialization

In this release, tm_set and tm_get calendar time API calls are currently not supported.

The number of clock ticks is defined by OSC_TIME_TICK_PER_SEC, which is retrieved from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means every tick equals to 10ms). However, the OSC_TIME_TICK_PER_SEC could be different under other real-time or proprietary Linux.

Setting the task Time-Slice value while creating pSOS tasks with the time slice option set, will use the value called OSC_DEFAULT_TSLICE, which is defined in osc_lx.h. By default, this value is set for the time slice to be 100ms. Make sure you modify this value to match with your application needs if necessary.

Memory Usage

OS Changer libraries used the system heap directly to provide the dynamic and partition pool memory. The Memory management and garbage collection is best left for the Linux kernel to be handled, so OS Changer does not restrict application with memory request from partition and/or dynamic memory pools. The maximum memory the application can use will depend on the memory availability of the system heap.

Priority Mapping from pSOS to Linux

OS Changer first maps the pSOS priorities “0 to 255” to “255 to 0” OS Changer’s internal abstraction priority values. The abstraction priorities 256 plus one more for exclusivity are mapped to Linux utilizing a simple scheme (please refer to OSC_RTOS_INIT function defined in osc_lx.c). OS Changer queries to kernel to find out the min and max priorities to first calculate the linux priority window. Then it maps the abstraction priorities one on one to Linux priorities by picking up a range exactly in the middle of the linux priority window. Please modify the priority scheme as necessary for your application. If you want to minimize the interruption of the external native linux applications then you would want the OS Changer abstraction priorities to map to the higher end of the linux priority window.

OS Changer abstraction priority value of 257 is reserved internally by OS Changer to provide the necessary exclusivity among the OS Changer tasks when they request no preemption or task protection. The exclusivity and protections are not guaranteed if the external native Linux application runs at a higher priority.

It is recommended that the Linux kernel be configured to have a priority of 512, so that the OS Changer priorities will use the window range in the middle and as such would not interfere with some of core Linux components. If your Linux kernel is configured to have less than 257 priorities, the OS Changer will automatically configuring a windowing scheme, where multiple number of OSC Changer priorities will map to a single Linux priority. Because of this, the reported priority value could be slightly different than what was used during the task creating process. If your application uses the pre-processor called OSC_DEBUG, then all the priority values and calculations will be printed when you call the OSC_RTOS_Init function.

Conditional Compilations

Select the RTOS by setting the following compiler definition as follows:

		Compilation Flag

		Meaning

		RTOS

		The value of this flag indicates the RTOS selection defined in osc_changer.h:

OSC_NUCLEUS – Nucleus PLUS from ATI

OSC_THREADX – ThreadX® from Express Logic

OSC_VXWORKS – VxWorks® from Wind River Systems

OSC_MQX – Precise/MQX® from ARC® International

OSC_ITRON – ITRON based operating system

OSC_LINUX - Linux® OS

If you are doing your own porting either to another commercial or proprietary RTOS, you could add your own define and include appropriate interface files. For Linux, define as RTOS = OSC_LINUX.

		Compilation Flag

		Meaning

		LINUX_ADV_REALTIME

		The value is to be used only when RTOS selection is OSC_LINUX. If your Linux distribution supports LINUX_ADV_REALTIME then you would want to set this define to 1 as shown below:

LINUX_ADV_REALTIME = 1

This would provide a better performance and timer resolution and also will take advantage of the advanced real-time extensions offered under some Linux distributions.

Based on the compiler tools that you use, please select any one of the following definitions
below (if your choice is not listed, you can ignore this pre-processor flag):

		Compilation Flag

		Meaning

		ARM_TOOLS

		Using ADS tools from ARM® Ltd

		GNU_TOOLS

		Using GNU Tools

		MQX_TOOLS

		Using Metaware® Tools from ARC® International

Select the OS Changer components for your application use as follows:

		Compilation Flag

		Meaning

		INCLUDE_OSC_ANSI

		This flag is NOT supported under LINUX OS

		INCLUDE_OSC_IO

		Define this flag if your application needs the OS Changer I/O API support

		INCLUDE_OSC_PSOS

		Define this flag if your application needs to use the pSOS compatibility APIs (optional product)

		INCLUDE_OSC_VXWORKS

		Define this flag if your application needs to use the VxWorks compatibility APIs (optional product)

		INCLUDE_OSC_POSIX

		Define this flag if your application needs to use the POSIX compatibility APIs (optional product)

Select if running under windows emulation and prototyping environment:

		Compilation Flag

		Meaning

		BUILDING_ON_WIN32xe "NU_ENABLE_HISTORY"

		This option is NOT supported under RTOS = LINUX at the moment mainly because Cygwin does not support all the required posix APIs that OS Changer needs.

If you are building on Windows computer using RTOS prototyping environment (NOT instruction set simulator) then define this flag. Also you should not define this flag if you are building the application for a specific target.

Select the following definition if you want to OS Changer to enable error checking for debugging purposes:

		Compilation Flag

		Meaning

		OSC_DEBUG_INFO

		Enable error checking for debugging

Sample Porting of VxWorks Application with OS Changer using OSPAL

OS Changer is designed to be used as a C library. Services used inside your application software are extracted from the OS Changer and TARGET OS libraries. They are then combined with the other application objects to produce the complete image. You can download this image to the target system, or place it in ROM on the target system.

To start using VxWorks™ OS Changer, do the following:

Create a New Project

You have to create a new project in OS PAL for the application.

To create a new project:

1. From OS PAL main window, select any project under C/C++ Projects tab on the left pane.

2. Select File > Porting > VxWorks > Import Workbench Project. You can also click on the Porting icon [image: image10.png] from the task bar.

3. On OS PAL Import window, select a workspace directory to search for existing workbench projects by clicking on Browse button next to the text box, and click Next.

4. In the Projects in Workspace window, the projects list is displayed in a Checkbox Tree. Applications and Libraries are separated into respective categories.

5. Select or deselect any one or all of the projects by selecting the check box next to the project name and click Finish to import the project.

6. If you select any application type project, provide the inputs for the project and click OK. If you do not want to provide the inputs, you can just click Cancel.

7. If you select an application project and if it contains any referenced projects not selected by you, then a Confirmation dialogue box is displayed on your screen to ask if you want to port the project.

8. After the porting is successfully done, the porting report page is displayed. Click Done to complete the process.

9. The ported projects are displayed in OS PAL projects perspective.

You have successfully imported your VxWorks application to OS PAL.

Link-in MapuSoft Technologies Products with the Application

Now that you have your application is in OS PAL, you are ready to link-in MapuSoft products.

To link-inMT’s products with the application:

3. Double click os_application_start.c in the Source folder in your project to open it.

4. Replace the contents by copying all of the content from os_application_start.txt (found in the folder with the sample VxWorks application files) and pasting it over everything in the original file and click Save. Note: You have replaced the template file created by OS PAL with code customized for your application.

5. Double click on the windDemo.c file in the Source folder in your project to open it.

6. Comment out the #include directives by adding /* at the beginning and */ at the end since the application will not need them anymore.

Note: The text should turn green once the comment is active.

/*

#include "vxWorks.h"

#include "semLib.h"

#include "taskLib.h"

#include "msgQLib.h"

#include "wdLib.h"

#include "logLib.h"

#include "tickLib.h"

#include "sysLib.h"

#include "stdio.h"

*/

7. Link-in MT’s header files with the application by adding the following right below where you typed */ and click Save.

#include "osabstractor.h"

#include "oschanger_vxworks.h"

Build the Application to Include MT’s Products

You have to rebuild the application to include MT’s products.

To build the application:

· Select the top level (the project name) of the project that you have created, right click and select Build Project.

Run the Application on the Host in OS PAL

Now that your application is using MapuSoft’s products, you can run this real-time VxWorks application on a host for simulation and debugging. MapuSoft provides the best possible simulation because we do not add a scheduler which would cause a performance strain. The only constraint for this application is the non real-time OS, Windows, being used as a host. Also, debugging on a readily available host machine, such as the Windows computer is much easier than debugging directly in the target environment.

To run the application on the Host in OS PAL:

8. Select the project that you have created, right click and select Debug As > Open Debug Dialog.

9. Click on New icon on the top left corner (first icon, blank page with a plus).

10. Click on Debugger tab.

11. From the Debugger drop down menu, select OS PAL Supplied GDB.

12. When the Debug perspective is open, click Debug and click Resume (yellow and green play arrow). The debugger console (black box) should automatically appear in Windows task bar. Open it to show the application’s execution.

13. Your VxWorks application is now running on the host. When finished, close the console to stop it from running.

Generate Code on the New Target OS

You can now move your VxWorks application to your target OS, for example Linux*.

*MapuSoft Technologies support the following targets: Threadx, Nucleus, Solaris, Windows XP, micro-ITRON, VxWorks, MQX, Linux, and QNX, LynxOS.

To generate code on the new target OS:

14. Click OS PAL Projects Perspective button to get back to your project.

15. Select the project that you have created and click on the Optimizer button.

16. Select the target OS you want to run this application now from the drop down menu.

17. Select the check box next to Generate Project File.

18. Choose a folder to save the files (make sure the folder has no spaces in the name) and click Next.

19. In the File Path to Store Profiler Data box, type the path to your OS PAL project “/folder name/project name”.

20. Enter 500 in the Number of Messages to Hold in Memory box (replace default).

21. Enter 500 in the Number of Profiler Messages box (replace default).

22. Click on Platform API Profiling tab.

23. Select the box next to Enable Platform Profiling. This provides you with data concerning utilization of MapuSoft’s APIs in your application. You can also view graphs and charts that detail performance data such as API execution time.

24. Click on Application Functions Profiling tab. This provides you with data concerning the functions in your application. This data is presented in charts and graphs to analyze and identify bottlenecks which are slowing down your application.

25. Select Enable Application Function(s) Profiling.

26. Enter the name “taskHighPri” in the Application Function box and click Add.

27. Enter the name “taskLowPri” in the Application Function box and click Add.

28. Click Next.

29. Show the Inline Feature, but keep it as default and click Next.

30. Show each configuration tab (leave all options as default with Task Pooling and Process Features turned off – they won’t work with this sample application).

31. Click Finish.

Run the Application on the Target OS

Now that MapuSoft’s products have been generated for your application, you are now ready to run the legacy VxWorks application on Linux.

Note: For the file coping to work, you must use Ethernet on the LAN, not wireless. You may also need to disable the firewalls on your computer (anti-virus and Windows).

To run the application on the Target OS:

32. Browse to the folder on your computer where you choose to save the generated files.

33. Copy the folder and paste it into your Shared Documents Folder.

34. Start the Microsoft Virtual PC program.

35. Double click on CENTOS.

36. Click on Applications > Network Servers.

37. Double click on the share with your name (you might have to browse to where you have saved your generated folder on your shared drive).

38. Copy the folder and paste it into the Root folder (Root’s home icon on desktop).

39. Browse into the generated folder until you see the makefile, make a note of the path (if you cannot see the path, click edit > preferences and navigate to the second tab Behavior, and select the check box next to Always open in browser windows box. Exit and return to your folder).

40. Right click on the blank space on the desktop and select Open Terminal.

41. Enter cd /”path that is displayed when you browsed to the makefile in Step 9” (For example, cd /root/example_folder), and click Enter.

42. Enter “make clean all ROOT_DIR=$PWD”, and click Enter.

43. You can see some Warnings. It is OK to view the warnings but be careful with the Errors.

44. Enter “/your-project-name_out”, and click Enter.

45. Click Control, C to stop the application.

Now your VxWorks application is running on Linux.

If you wish to port this application to a different OS, you only need to repeat the code generation steps (Step 6 and 7) and choose a different OS. This provides true cross-OS development.

Revision History

Document Title: Programmers Guide for MapuSoft Standalone Products in MS Word

Release Number: 1.3.5

		Release

		Revision

		Orig. of Change

		Description of Change

		1.3.5

		0.1

		Vv

		· New document

· Updated UITRON with micro-ITRON

· Added revision history

· Renamed Getting started to Programmers Guide

· Changed the Programmers Guide description on page 8

[image: image11.jpg]

26

[image: image11.jpg]_1302099502.vsd

_1302099503.vsd

_1302099501.vsd

text

Title
￼

￼

Page ￼

Title

Nucleus NET OS Changer

Legacy Application

OS Abstractor for Target OS

Target Operating System

Nucleus PLUS OS Changer

