

Combining Your Ada
& C/C++ Projects

Convert your project.
Reuse your design.

Simplify your maintenance.

 Integrate Your Projects

2

Table of Contents

Executive Summary …………………………………………………………… Page 3

Background and History

Combining Ada and C/C++ projects …………………….………… Page 4
History of Ada ………………………………………………………..…… Page 4
History of C/C++ ……………………………………………….………… Page 5
The debate between two superhero languages ………………… Page 6
And the winner is… ? …………………………………………….……… Page 7
Special Section: A Note to the Language Guys ………………… Page 7

The Problem

Do I have to abandon my project? ………………………….……… Page 8
Why should I combine my projects? ……………………………… Page 8
Are there really projects combining C/C++ and Ada? ……… Page 10
What are the real costs for development? ……………….………… Page 10

The Solution – Ada-C/C++ Changer

How do you combine projects? ………………………..…………… Page 11
Setting up the environment – Easy and Intuitive ………….… Page 11
Supports the simple, but handles the complex projects ….…. Page 13
You can develop in Ada, but debug in C/C++ ……………..…… Page 13
Integrating with a real-time operating system …………….…… Page 14
Support for multiple targets, operating systems, and interfaces
………………………………………………………………………….…………… Page 15
For other configurations ……………………………………….………… Page 16
Conclusion …………………………………………………………………… Page 17

About Us and Contact

About Mapusoft ……………………………………..………..…….…… Page 18
About Ada-C/C++ Changer …………………………..….…………… Page 18
For more information …………………………………….…….………… Page 18
Contact Us ………………………………………………….………..……… Page 19

3

Executive Summary

There is an ongoing debate among programmers using Ada and C/C++. The Ada
developers think that C or C++ is a dangerous and poorly designed language. Also,
since the government issued a mandate in 1987 for all DoD projects to be
developed and written in Ada, there is a certain amount of pride surrounding this
language. While the mandate existed, there were thousands of projects developed
and successfully launched using Ada. Those projects amounted to hundreds of
millions of lines of code.

There is no clear winner between the languages. Both languages have strengths.
Ada has been used for decades for government and DoD development. C/C++ is
an incredibly powerful language in the hands of an experienced programmer.
There is no clear winner in the debate.

There is one thing that is certain: future development will be focused around the
integration of Ada projects and C/C++ projects. There are too many existing Ada
applications still in the field for the language to disappear, yet most new projects
are using C or C++ as the language of choice.

The solution to integrating two projects in Ada and C/C++ is to use Mapusoft’s
Ada-C/C++ Changer. Ada-C/C++ Changer easily converts software written in
Ada code to C/C++, allowing Ada applications to be combined with C/C++
projects. The resultant C/C++ software can be integrated with OS Abstractor®
from Mapusoft’s Cross-OS Development Platform to support a wide variety of
host and target OS platforms. This conversion process eliminates the need for
costly and tedious code rewrites, saving you time and money.

Ada-C/C++ Changer is a fully automatic conversion engine and requires no
human intervention. It converts 100% of your Ada source into C/C++. The Ada-
C/C++ Changer includes a fully validated Ada compiler, which supports Ada95
and parts of Ada 2005. The output code is efficient and readable C/C++ that
exactly matches the semantics of the original Ada program. The Ada-C/C++
Changer also includes a GNAT Ada compatibility option to allow you to easily
convert Ada code developed utilizing GNAT compilers. It also includes a POSIX
Ada interface package to assist you in transitioning your code that relies on
POSIX features.

4

Combining Ada and C/C++ projects

For government projects, the idea that most software projects involve entirely
new designs is wrong. The government, particularly the Department of Defense,
has been writing software for over 50 years. Although not all of that software is
still in operation, there are millions of lines of code that are. When a new
development project comes up for review, there will likely be new software
development as well as software integration with an existing project. In this
paper, we will examine the idea of integrating software projects using two very
popular languages in the embedded market – Ada and C/C++. This paper will
also present a tool – Mapusoft’s Ada-C/C++ Changer – that simplifies the
process of integrating the two languages.

History of Ada

The Ada language has an interesting lineage. Officially released in the late 1970s,
it has been through several revisions over the last few decades. It has been used
for millions of lines of code, mostly in government related projects. The most
widely used revision, Ada95, was released in 1995. But the start of the language
and its role in government projects is interesting.

In the early 1970s, the Department of Defense was spending significant time,
money, and resources on software development. Most of the development was on
embedded applications. One study estimated that in 1973-1974, around $3Billion
was spent on software development. (In today’s terms, that’s around
$14.5Billion.) Unfortunately at the time there was no common language or
hardware platform in existence. For projects going on during this period, over
450 different languages were used. Most of these languages were outdated,
cumbersome, or not portable enough to be used across multiple platforms. To
reduce this complexity, a common high-level language needed to be developed.

A working group was formed in 1975 to design a new language that could act as a
standardized language for many of the DoD’s projects. After much analysis and
several proposals, a single proposal was chosen for approval in 1979. The
language was named after Ada Lovelace (1815-1852), who worked on Charles
Babbage’s early mechanical computer, thus being considered the first computer
programmer.

From there, the language grew in popularity within new government projects. As
the popularity of Ada grew, the government issued a specific mandate in 1987 to
make sure that all new development was done in Ada.

The language has gone through several revisions since its initial creation. It
became an ANSI standard in 1983 and an ISO Standard in 1987. Ada95, the most
widely used version of the standard, was officially published in 1995, with an
update released in 2001. Another version of Ada was published in 2007.

5

To date, Ada is still quite entrenched in the embedded world, especially in
ongoing government software projects. Although the mandate for using Ada was
lifted by the U.S. government in 1997, there remains a large installed base of Ada
applications. While there only a small fraction of new projects are being started
with Ada as the language of choice, many software projects today are updating
existing Ada applications and integrating with other software projects written in
other languages, such as the C programming language.

History of C/C++

The programming language C started as a project for Bell Laboratories by Dennis
Ritchie. The language was developed in the early 70s alongside the development
of the Unix operating system. It was developed as a way to reduce the many
complexities and portability issues related to software development using
assembly language. At the time, many software projects were written in assembly
language.

Like many applications at the time, the UNIX operating system was originally
written in assembly language. As C was introduced and formalized, Unix was
rewritten using C. The language itself provided low-level access like assembly, but
offered a higher level syntax. This eased the burden on software developers and
made it easier to write code and develop applications. This flexibility and focus on
portability provided a great language for development of system software, which
fueled the growth of the embedded software market.

For embedded systems, the popularity of C grew based on it’s flexibility as a
language. As the embedded software market grew, the number of available
semiconductors exploded and C became the de facto standard. There are very few
32-bit processors, if any, that don’t have some type of support for the C language.

Another important aspect governing the growth of embedded systems and the C
language has to do with its modularity and portability. Certain functions can be
written in C and are portable across many different architectures. Because of this,
entire libraries of C functions can be written and stored in libraries for use across
multiple platforms. This reduces the amount of re-writing for a programmer
using C in their software development. The rise of open source software has also
helped fuel the growth of C. As more code is released into the community,
developers continue to update and contribute to the code base, creating an ever-
increasing pool of working software.

In 1989, a version of the C language was ratified by American National Standards
Institute (ANSI), creating the first version of ANSI C. That standard was adopted

6

as an ISO standard in 1990. There have been several minor updates to the
specification since then, but the language remains very close to its original form.

In 1979, Bjarne Stroustrup took the C language and added several enhancements
to the language. In 1983, this new language was named C++. Since that time, it
has seen dramatic growth within the software industry. Today it is a very popular
programming language for software developers. Many projects use a combination
of both the C language and the C++ language in their development.

Today’s embedded marketplace, C and C++ are the most popular and dominant
languages being used for development. Because of its popularity and history, we
have a great number of software developers with strong C/C++ language skills
available in the market today.

Why so serious?
The debate between two superhero languages

There is an ongoing debate among programmers using Ada and C/C++. The Ada
developers think that C or C++ is a dangerous and poorly designed language. Also,
since the government issued a mandate in 1987 for all DoD projects to be
developed and written in Ada, there is a certain amount of pride surrounding this
language. While the mandate existed, there were thousands of projects developed
and successfully launched using Ada. Those projects amounted to hundreds of
millions of lines of code.

The development of Ada was through rigorous design and requirements
documents over many years. It went through major revisions and has reached a
level of stability and maturity that many languages never see. And it was designed
for real-time and embedded systems. So, in some sense, Ada is the premier
language for real-time embedded system development.

On the other hand, C/C++ developers believe Ada is a language with little future.
The new processors and tools coming out in the market are all guaranteed to have
support for C or C++. C and C++ as languages have extensive demo code,
libraries, sample applications, and tools that facilitate the development process.
The C /C++ compilers are continually being updated. In addition, C/C++ offers
incredible flexibility and powerful access to the low level features of the processor,
providing lots of capability during the application development process. In the
mind of some developers, C/C++ is the language of choice.

7

And the winner is… ?

No one.

There is no clear winner. Both languages have strengths. Ada has been used for
decades for government and DoD development. C or C++ is an incredibly
powerful language in the hands of an experienced programmer and widely
accepted by the industry. There is no clear winner in the debate.

There is one thing that is certain: future development will be focused around the
integration of Ada projects and C/C++ projects.

Note to the language guys

Look guys… Here’s the deal -

If you’ve been a programmer for any length of time, you know that the progression of
technology – compilers, semiconductors, operating systems, and programming languages –
rises and falls. Over time, there is an ebb and flow for all things technological.

While each facet of technology has its own strengths and weaknesses, sometimes there are
people who are adamant and fierce proponents of one solution over the others. In this
particular situation, there are often arguments surrounding the use of Ada and C/C++.

MapuSoft does not advocate the use of one programming language over the other. We are
simply stating the fact that in today’s development environment there is a growing need to
combine Ada code and C/C++ code. This is an almost self-evident future growth trend.

The maturity and lifecycle of a technology product is determined by a multitude of factors –
product maturity, marketplace acceptance, government awareness, capitalistic mechanisms,
and symbiotic technology. All of those things are out of your (and our) control. Our
experience (and this paper) is based on our exposure in the marketplace, discussions with
our customers, discussion with prospects, marketplace/industry data, and discussions with
leading experts.

At MapuSoft, our goal is not to direct or suggest the language you use, only to make your life
easier after that choice has been made.

8

Do I have to abandon my project?

By far, the biggest misconception you may have about combining projects is that
you need to abandon everything you’ve ever written and move to C/C++.

In fact, as we’ll discuss later, you can actually continue developing in Ada and
then test your code in C/C++. There is absolutely no reason to cause you to
abandon your existing work.

There are two very legitimate reasons why you should not abandon an existing
project – money and time. If you’ve spent a week writing code, that represents an
investment of your time and effort. You expend that effort on your employer’s
behalf in order to complete the project. And your employer pays you in return for
your time. The money and time are both invested in order to reach a finished
project.

To throw away those two components would be wasteful and inefficient. The
much better solution is to figure out a way to leverage your existing work and to
re-use as much code as you can.

Why should I combine my projects?

There are several reasons why you would want to combine projects written in Ada
and C/C++. Here are a few:

Retooling/Rehosting/Rework is expensive

Sometimes when you start to update an existing software application, the
ancillary costs start to escalate. For example, you may need to upgrade your host
machine, development environments, licenses, hardware platforms, compilers,
etc. The overall project costs can grow outrageously expensive. In some cases the
rehosting expense can be greater than the cost of the original development.

In addition to the high costs of rehosting, there are also other costs. It takes time
to set up and configure new machines and new tools. It takes time to start up new
boards and make sure they are working properly. When you consider the amount
of time needed to configure and set up the development environment, the overall
cost to the development schedule will be substantial. These additional costs are
hard to justify for new projects, especially in today’s economic atmosphere and
budget cuts.

9

Lack of programmers

Because of the proliferation of C/C++ programmers, there may be a lack of Ada
developers in the market. Depending on the application, you may need to hire
additional expertise in order to maintain the current software. Or, you may need
to hire new programmers to learn the existing codebase. With Ada, this effort will
be much harder than that needed to hire C/C++ programmers.

Existing sample code / Support for new platforms

The idea that demo code can influence a project may sound silly, but it happens.
Demo code can be a simple “Hello World” example, but it can sometimes be
complex code routines that take advantage of advanced functionality of a
processor. Those code samples may range from the initialization of the chip to
properly configuring interrupt controllers or registers. The code could come from
the community at large or it could come from the chip supplier. In today’s
embedded software market, most likely this code is written in C.

Availability of middleware

In many situations, a software application incorporates multiple middleware
packages. This middleware can come from public sources or it can come from
other vendors. While there exist middleware packages for Ada, the number of
middleware packages written in C/C++ are more diverse. Additionally, the total
number of middleware packages available in C/C++ outnumber the ones
available for Ada development.

Government mandate

In recent years, there has been a push from government agencies to encourage
and recommend projects that are re-using existing code. The concept behind
leveraging existing code and current software applications has been mentioned
throughout this paper. The idea of re-use makes absolute sense from a software
perspective, but there is now active support from government officials on
combining projects and reusing existing code.

10

Are there really projects combining C/C++ and Ada?

Recently, there has been a combination of two government projects that were
asked to integrate into a single project. Both of these projects are well-known
simulator applications, with one that has been running approximately 20 years
and the other one operating for 10, one in Ada, and one in C++.

The directive? Combine both of those projects into a single simulator.

The reason? By combining both projects, the overall development costs will go
down dramatically and the functionality of the simulator will be improved by
leveraging mutual functionality and deepening the learning curve on both
projects.

So, yes, this is happening today.

What are the real costs for development?

Development costs for writing an application in Ada can vary depending on the
type of application. The development cost per line of code jumps significantly if
the application is used in a safety-critical system. This increase is due to the
added cost of testing. If you are developing a high-security application, those
numbers go even higher.

In practice, the range of developing an application in Ada is $25-$50 per line of
code. When you factor in the rigorous testing for a safety-critical application, the
cost per line doubles to $100 for each line written.

If you are translating code from Ada to C, the costs average around $5 per line for
the translation and then an additional $10 per line for testing. The real challenge
comes from finding the right engineer to make the translation happen. If you
were to handle the translation by hand, you would need an engineering team
proficient in both Ada and in C. That’s where the Ada-C/C++ Changer makes the
difference.

Ada-C/C++ Changer reduces the laborious task of manual translation. Rather
than taking several months to accomplish the translation from Ada to C, using
Ada-C/C++ Changer condenses that time down to a few hours. Also, the Ada-
C/C++ Changer does the translation perfectly, so you preserve the semantics of
the original Ada program. This allows you to cut down on the time spent testing,
since you can use the exact same test suite and receive identical output.

11

How do you combine projects?
Here’s how:

The solution to integrating two projects in Ada and C/C++ is to use Mapusoft’s
Ada-C/C++ Changer. Ada-C/C++ Changer easily convert’s software written in
Ada code to C/C++ thereby allowing Ada applications to be combined with
C/C++ projects. The resultant C/C++ software can be integrated with Mapusoft’s
OS Abstractor® environment to support a wide variety of host and target OS
platforms. This conversion process eliminates the need for costly and tedious
code rewrites, saving you time and money.

Ada-C/C++ Changer is a fully automatic conversion engine and requires no
human intervention. It converts 100% of your Ada source into C/C++. The Ada-
C/C++ Changer includes a fully validated Ada compiler, which supports Ada95
and parts of Ada 2005. The output code is efficient and readable C/C++ that
exactly matches the semantics of the original Ada program. The Ada-C/C++
Changer also includes a GNAT Ada compatibility option to allow you to easily
convert Ada code developed utilizing GNAT compilers. It also includes a POSIX
Ada interface package to assist you in transitioning your code that relies on
POSIX features.

Setting up the environment – Easy and Intuitive

Setting up the Ada-C/C++ Changer is straightforward for all projects. It is
designed to work on all types of projects, large, small, simple and complex. The
interface is a simple set of dialog boxes that guide you through the entire setup
process.

With the Changer, there are no constraints on directory structure, file layout, or
configuration management. So however your files are organized, or whichever
configuration management tool you are using, the Ada-C/C++ Changer will work
with it.

Additionally, it provides complete freedom in regards to your file naming
conventions. There are no limitations on naming conventions and extensions of
your source files. You can use the common extensions for your files -
.ada, .adb, .ads, .bdy, .spc, .sub. – or you can define your own custom extension
within the tool.

12

Ada-C/C++ Changer also includes C/C++ run-time sources that provide I/O,
tasking, exception handling, and memory management modules. These functions
are normally required by the Ada 95 language, to be called by the C/C++ code
that has been converted. These are referred to as the Ada run time library (RTL)

The tool also makes it easy for the programmer to transition from viewing Ada
code to viewing C/C++ code. This is done by carefully maintaining a solid
consistency during the code conversion process. Ada-C/C++ Changer preserves
Ada code’s comments, files structures, and variable names during the transition
to C/C++ code. This makes it simple for a programmer to understand and
comprehend the two software applications even though they are in two separate
languages.

Ada-C/C++ Changer also tracks changes to the source files, so you save time
during the build process by only compiling the files that have been modified since
the last build.

13

Supports the simple, but handles the complex projects…

The default setting for the Ada/C-C++ tools is for small projects. The default
settings allow you to immediately start working on code and running demos. The
defaults are there for you to get up and running quickly and to start testing
demos and simple applications.

Ada/C-C++ Changer can be configured for larger, more complex projects. Many
large projects, especially government projects, will involve multiple Ada or
C/C++ source code directories and libraries. These directories may be common
among all the developers or they may represent an existing application. In any
case, there is an actual need to keep the new development separate and in a
different directory structure. The Ada/C-C++ Changer allows you to have your
source in multiple directories or in multiple libraries. You can use the GUI to
point to each directory separately. During the conversion process, the tool will
pull the source code from each of the separate directories and pull them all
together to create the C/C++ code for the target environment.

You can develop in Ada, but debug in C/C++

A big problem for developers switching between the languages has to do with the
build/compile/debug process. In most situations, the developer will make
changes to the source code, download the application, and then debug it. But, in
most situations, all of this is using the same language.

When you are using two different languages, you run into the problem of
modifying code and then debugging in a different language. Here’s the scenario,
let’s say that you are writing in Ada, but then you need to test the application on
the processor in C/C++. It becomes difficult to manage this constant transition
between the two languages.

Ada/C-C++ Changer makes this aspect of the project easy. You can develop your
code in Ada and then debug in C/C++. By setting certain flags in the GUI, you
allow the conversion process to generate a directive in the C/C++ source code
that allows most C/C++ debuggers to trace the generated object code back to the
particular line of Ada source that produced it. You can also setup the tool so that
C/C++ source code is shown in the debugger rather than the Ada source.

Additionally, using Ada/C-C++ Changer you can also see local and global
program data during the debugging session and you can set breakpoints in either
the Ada source, C /C++source, or disassembly code.

14

Integrating with a real-time operating system

As you move to your new platform, many applications will want to integrate with
real-time operating systems (RTOS). This can be accomplished by using OS
Abstractor from MapuSoft. Using OS Abstractor allows you to keep your real-
time performance while allowing you the flexibility to move to any platform and
real-time operating system you choose. In addition to supporting any real-time
operating system you choose, your output code exactly matches the semantics of
your Ada application.

An illustration is shown below:

15

Support for multiple targets, operating systems, and interfaces

Ada-C/C++ Changer can work on targets with no OS or can directly utilize the OS
primitives provided by the OS Abstractor to support most of the major operating
systems being used in software development today. Below is a list of the
supported operating systems:

VxWorks® 6x/5x

Windows® XP/Vista/7/CE

Android®

Linux® 2.4/2.6

LynxOS®

LynxOS-SE®

uITRON®

MQX®

NetBSD®

Nucleus®

QNX® Neutrino® RTOS

RT Linux®

Solaris®

ThreadX®

T-Kernel®

μC/OS-III™

Unix®

FreeRTOS™

16

For other configurations -

If you need more a complex setup, on the Ada-C/C++ Changer Configuration
Options page you can set the following configurations:

C/C++ Output – Allows you to modify the stylistic considerations based
on your preferences

Ada Listings – Allows you to set your preferences for Ada listings

Ada Messages – Controls the output and number of the Ada error and
warning messages

Ada Drivers - Specifies the required modes for reporting compiler
actions

Additional – Allows you create custom options or additional options

Here is a sample screenshot:

17

Conclusion

The Ada-C/C++ Changer is a complete tool for integrating projects that include
Ada and C/C++. It allows you to easily convert software written in Ada code to
C/C++ utilizing AppCOE. The resultant C/C++ software can be integrated with
OS Abstractor® from Mapusoft’s Cross-OS Development Platform to support a
wide variety of host and target OS platforms. This conversion process eliminates
the need for costly and tedious code rewrites, saving you time and money.

The Ada-C/C++ Changer is a fully automatic conversion engine and requires no
human intervention. It converts 100% of your Ada source into C/C++. The
Changer is based on a fully validated Ada compiler, which supports the full
Ada83/Ada 95 language. The output code is efficient and readable C/C++ that
exactly matches the semantics of the original Ada program. The Ada-C/C++
Changer also includes a GNAT Ada compatibility option to allow you to easily
convert Ada code developed utilizing GNAT compilers. It also includes a POSIX
Ada interface package to assist you in transitioning your code that relies on
POSIX features.

Ada-C/C++ Changer can work on targets with no OS or can directly utilize the OS
primitives provided by the OS Abstractor to support most of the major operating
systems being used in software development today.

To get a full demo, please contact us at: info@mapusoft.com or call 1-877-
MAPUSOFT (1-877-627-8763).

mailto:info@mapusoft.com

18

About Mapusoft

MapuSoft Technologies (MT) is the number one provider of embedded software
re-usability solutions and services that are designed to protect software
investment by providing customers a greater level of flexibility and control with
product development. In addition to off-the-shelf tools, MT offers porting,
integration, support and training services to help developers easily migrate from
legacy platforms to the next generation. We believe that our advanced software
and vision will revolutionize the embedded software industry. We are working
hard to provide software that is practical, familiar, financially reasonable, and
easily operable. We provide full source code with no royalty fees. Our licensing
strategy makes it extremely affordable for you to incorporate our products into
your embedded applications. In addition, our attention to engineering detail
provides you with robust software and requires minimal technical maintenance.

About Ada-C/C++ Changer

Ada-C/C++ Changer allows developers to easily convert software written in Ada
code to C/C++ utilizing AppCOE. The resultant C/C++ software can be integrated
with the robust OS Abstractor® environment to support a wide variety of host
and target OS platforms. The automatic conversion process eliminates the need
for costly and tedious code rewrites, providing extensive resource savings. Ada-
C/C++ Changer generates ANSI C output as well as certain C++ features while
preserving Ada code‘s comments, files, structures, and variable names to ease
ongoing code maintenance. . The Ada-C/C++ Changer also includes a GNAT Ada
compatibility option to allow you to easily convert Ada code developed utilizing
GNAT compilers. It also includes a POSIX Ada interface package to assist you in
transitioning your code that relies on POSIX features.

For more information

• To download MapuSoft’s free software evaluation visit:
http://mapusoft.com/downloads/

• To learn more about our licenses and request a quote visit:
http://connect.mapusoft.com/contactus.html

• Ada-C/C++ Changer Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/ada-
changer.pdf

• Cross-OS Development Platform Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/cross-os-
dev-platform.pdf

http://mapusoft.com/downloads/
http://connect.mapusoft.com/contactus.html
http://www.mapusoft.com/wp-content/uploads/documents/ada-changer.pdf
http://www.mapusoft.com/wp-content/uploads/documents/ada-changer.pdf
http://www.mapusoft.com/wp-content/uploads/documents/cross-os-dev-platform.pdf
http://www.mapusoft.com/wp-content/uploads/documents/cross-os-dev-platform.pdf

19

Contact Information

For more information about Ada/C-C++ Changer or Mapusoft, please contact us
at:

US Headquarters
MapuSoft Technologies, Inc.
Unit 50197
Mobile, AL 36605

Tel: (251) 665-0280
Toll Free: 1-877-MAPUSOFT (1-877-627-8763)
Fax: (251) 665-0288

www.mapusoft.com

E-mail: info@mapusoft.com or sales@mapusoft.com

For a complete listing of International Offices, please click here.

http://www.mapusoft.com/
mailto:info@mapusoft.com
mailto:sales@mapusoft.com
http://mapusoft.com/contact/

20

Mapusoft’s AppCOE:

	US Headquarters

